УДК: 539.141:537.868.531

ЭКСПЕРИМЕНТАЛЬНОЕ И ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ КОНВЕРСИИ ЭТАНОЛА В ТЛЕЮЩЕМ РАЗРЯДЕ АТМОСФЕРНОГО ДАВЛЕНИЯ

В.И.Архипенко, А.А.Кириллов, Е.А.Сафронов, Л.В.Симончик, А.Н.Мигун*, А.П.Чернухо*

Институт физики им. Б.И. Степанова НАН Беларуси, 220072, Беларусь, г. Минск, просп. Независимости 68, E-mail: a.kirillov@dragon.bas-net.by *Научно-производственное предприятие "Перспективные исследования и технологии", 223058, , Беларусь, пос. Лесковка, ул. Совхозная 1, E-mail: migoun@artech.by

Аннотация

Представлен комплекс экспериментальных и теоретических исследований этанола в конверсии синтез-газа при содействии разряда постоянного тока при атмосферном давлении с плазменным катодом. Численное моделирование кинетики конверсии выполнено с использованием Коннов модели, в соответствии с предположенным тепловым характере процесса.

Ключевые слова: Этанол, тлеющий разряд, давление, атмосфера, конверсия

Введение

Дефицит природных ресурсов, особенно нефти, привлекает внимание исследователей к поиску альтернативных видов топлива и их наиболее эффективному использованию. Теоретические и экспериментальные исследования показали, что добавление водорода и синтез-газа к основному топливу позволяет достичь более высокой эффективности и снизить выброс загрязняющих веществ [1].

Однако, при этом возникают проблемы хранения и транспортировки водорода. Наиболее перспективным решением является генерация водорода непосредственно перед сжиганием в процессе плазменной конверсии моторного топлива [2]. Основные преимущества технологий, основанных на использовании плазмы, включают приемлемые режимы работы (атмосферное давление, невысокие газовые температуры, быстрый запуск, компактный размер и т.д.). Различные типы разрядов атмосферного давления (коронный, искровой, барьерный, скользящий дуговой постоянного, переменного и пульсирующего тока различных частотных диапазонов) предлагаются в качестве источников плазмы для этих целей [3,4].

В данной работе проводится экспериментальное и теоретическое исследование конверсии смеси этанол-воздух в тлеющем разряде атмосферного давления на постоянном токе с плазменным катодом [5].

Численное моделирование кинетики конверсии выполняется в одномерном приближении в рамках модели [6], согласно предположению о термической природе процесса.

Эксперимент

Конверсия этанола осуществлялась в плазмохимическом реакторе, представляющем трехсекционную камеру с конфигурацией электродов катод-анод-анод (рис. 1). В секции А на расстоянии 1-1.5 мм расположены охлаждаемый медный катод 2 (стержень диаметром 6 мм) и медный анод 3 (пластинка толщиной около 1 мм), между которыми с помощью источника U1 (1500 B, балластное сопротивление R1~1200 Ω) зажигался самостоятельный нормальный тлеющий разряд при токе 150-200 мА. Через секцию А обеспечивался проток воздуха с расходом 0,3 - 0.7 л/мин, при этом выход его происходил через отверстие (диаметр 2 мм) в секцию С (кварцевая трубка 5 диаметром 10 мм и длиной 15 мм), которая располагалась под отверстием в электроде 2. Разряд с секции А служил в качестве плазменного катода для несамостоятельного разряда в секции С, который зажигался между электродом 3 и вторым анодом 4 с помощью источниκα U2 (3000 B, R2~1000 Ω).

Электроды в секции C расположены на расстоянии 1,5 см. Разрядный ток менялся от 50 мA до 200 мА. В секцию В подавалась смесь воздуха со спиртом с расходом воздуха 0.5-1.3 л/мин и спирта 1.0-2.0 мл/мин.

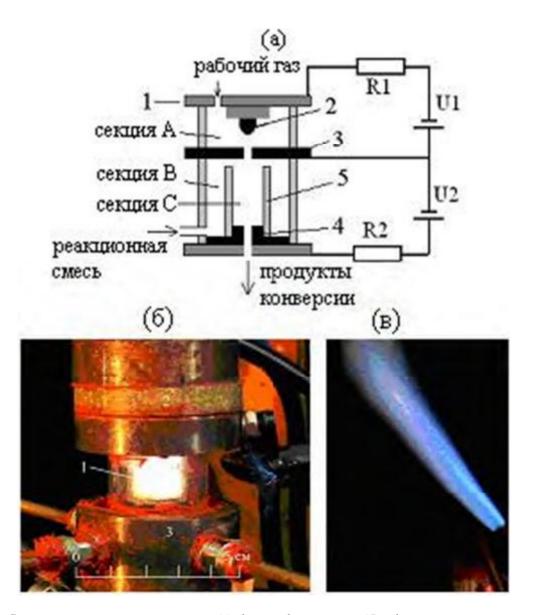


Рис. 1 – Схема плазмохимического реактора (а), фотография реактора (б) и факела горения синтез-газа (в)

Спирт из дозаторов по двум каналам поступал в секцию В через жиклеры, что обеспечивало нагрев и испарение спирта с полным переходом в газовую фазу без наличия аэрозольной составляющей. Далее пары спирта с воздухом поступали в секцию С, где в плазме несамостоятельного ТРАД осуществлялись плазмохимические процессы. Выход газов из секции С происходил через отверстие диаметром 2 мм в аноде 4.

В экспериментах для конверсии использовался воздух и смесь спирта (85%) с водой (15%). Для определения состава продуктов конверсии этой смеси, прошедшей обработку в плазме реактора, применялась диагностика, основанная на абсорбционной ИК-спектроскопии [7]. Спектры поглощения продуктов

конверсии регистрировались с помощью Фурье-спектрометра NEXUS (Thermo Nicolet) в диапазоне 600 - 4000 см⁻¹. Для подготовки к спектроскопическому анализу выхлопные газы из плазмохимического реактора прокачивались через 5.7 см газовую кювету с окнами из германия, которая была предварительно нагрета до 90 °C с целью предотвращения конденсации паров воды и этанола.

После обработки в плазме в спектрах выходящей из реактора смеси наблюдаются интенсивные колебательно-вращательные полосы, принадлежащие молекулам СО (2150 см $^{-1}$), СО₂(740 и 2350 см $^{-1}$), водяного пара (1600 и 3750 см $^{-1}$), СН₄ (3100 см $^{-1}$) и С₂H₂ (750 и 3300 см $^{-1}$), а также слабые полосы этанола (1050 и 2950 см $^{-1}$) (рис.2).

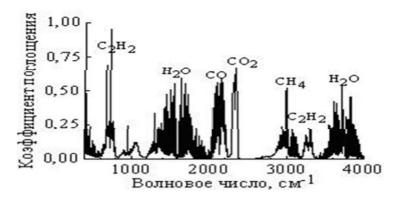


Рис. 2 – ИК спектр поглощения газовой смеси на выходе из плазменного реактора

Мольные доли оптически активных компонент продуктов конверсии этанола CO, CO_2 , CH_4 , C_2H_2 и H_2O определялись путем сопоставления экспериментальных спектров поглощения и рассчитанных с использованием базы спектральных данных Hitran [8].

Мольная доля этанола определялась с помощью экспериментальной калибровочной кривой поглощения, построенной с использованием газовых смесей с известной концентрацией спирта.

Мольные доли водорода, азота и кислорода рассчитывались, учитывая содержание этанола, воды, кислорода и азота на входе в реактор и мольных долей ИК активных компонент в продуктах конверсии, определенных экспериментально.

Дополнительно для контроля концентрации водорода применялось специально разработанное устройство, основанное на диффузии водорода через палладиевую мембрану [7].

Численное моделирование

При типичных условиях работы плазмохимического реактора вкладываемая в реакционную смесь энергия электрического разряда составляет $\sim 10~\mathrm{Дж/cm}^3$, что приводит к поступательной температуре выше 2000 К.

Вследствие этого, при численном моделировании кинетики конверсии использовалось предположение о термической природе процесса.

Моделирование в одномерном приближении осуществлялось с учетом выделения энергии в газовом разряде, при этом полагалось, что 65-70% энергии разряда идет на нагрев реакционной смеси, а остальное

теряется вследствие излучения и теплообмена с окружающей средой.

В расчетах был использован детальный кинетический механизм [6], состоящий из 1207 элементарных обратимых реакций между 127 химическими компонентами.

На рис. 3 представлены результаты расчета аксиального распределения мольных долей и температуры в случае скорости подачи в реактор водно-спиртовой смеси 1.25 мл/мин, скорости подачи воздуха 0.8 л/мин. Разряды в камерах А и С имели следующие параметры.

Самостоятельный разряд: ток 150 мА, напряжение 380 В, мощность 57 Вт; несамостоятельный разряд: ток 50 мА, напряжение 1400 В, мощность 95 Вт; суммарная мощность 252 Вт.

В первой трети разрядного промежутка нагрев газовой смеси осуществляется за счет энергии газового разряда.

После этого, вблизи z=0.5 см при температуре $T\sim 1100~\rm K$ происходит зажигание этанола с быстрым образованием водяного пара и продуктов частичной конверсии этанола (CH₄, C₂H₂, C₂H₄ и т.д.) в экзотермической стадии процесса.

За ней следует медленная экзотермическая стадия, в которой продукты частичного преобразования реагирует с водяным паром, например:

$$CH_4 + H_2O \rightarrow CO + 3H_2$$
.

В таблице 1 приведены экспериментальные и теоретические данные о продуктах конверсии, рассчитанные для двух значений тепловых потерь в окружающую среду (30 и 35%).

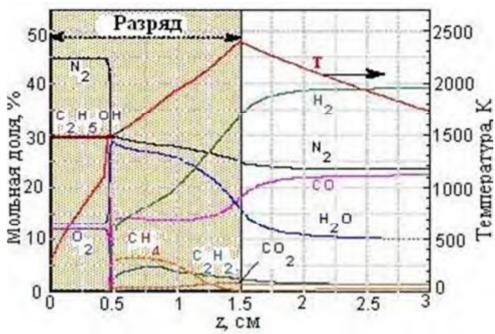


Рис. 3 – Аксиальные профили концентраций и температуры в реакторе

Видно, что они находится в хорошем соответствии, как по составу газовой смеси, так и по степени конверсии в водород, что является свидетельством адекватности теоретической модели и подтверждает предположение о тепловой природе конверсии этанола

в данных условиях. Вследствие этого, при фиксированных параметрах реакционной смеси основной представляется зависимость характеристик конверсии от мощности газового разряда.

Таблица 1 – Мольные доли продуктов конверсии

	Мольная доля,%			
Компоненты		Продукты конверсии		
	Смесь на входе	Эксперимент	Расчет, потери 35%	Расчет, потери 30%
C ₂ H ₅ OH	29.5	0.33	0	0
H ₂ O	16.8	8.85	10.1	6.42
N_2	43.0	23.23	23.8	22.7
O_2	10.7	0.11	0	0
CO		25.44	22.5	25.5
CO_2		1.11	1.34	0.89
CH ₄		1.33	0.67	0.38
C_2H_2		0.88	1.5	0.86
H_2		38.72	39.3	42.9

Параметры конверсии

При оценке эффективности преобразования реакционной смеси в синтез-газ наибольший интерес представляют состав выходящего из реактора газа, а также такие параметры, как коэффициент конверсии, скорость наработки продуктов конверсии (производительность) и цена производства водорода.

На рис. 4 представлена зависимость мольных долей основных продуктов конверсии этанола от суммарной мощности газового разряда.

Видно, что с увеличением мощности наблюдается рост мольных долей H_2 и CO и, напротив, убывание мольных долей C_2H_5OH , H_2O и N_2 .

Зависимость коэффициентов конверсии от мощности газового разряда приведена на рисунке 5а.

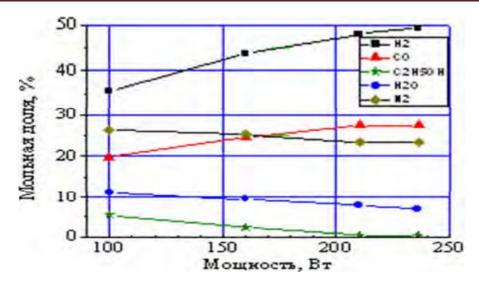


Рис. 4 – Зависимость состава выходящего из реактора газа от мощности газового разряда

С ростом мощности происходит монотонное увеличение коэффициентов конверсии, которое замедляется при достижении 210 Вт. Поскольку при достижении этой мощности наблюдается почти полное разложение этанола (см. рис. 4), это, по-видимому, свидетельствует об основном вкладе этанола в образовании водорода в нашем разряде.

Максимальные величины коэффициентов конверсии составляют, соответственно, $Y(C_2H_5OH \to H_2)=97.3\%$ и $Y(C_2H_5OH, H_2O \to H_2)=81.75\%$.

Зависимости от мощности разряда производительности водорода G(H2) и синтезгаза G(SG) (рис. 5б) такие же, как для конверсии. При мощности 210 Вт $G(H_2)$ и G(SG) достигают, соответственно, 1.33 л/мин и 2.13 л/мин при температуре газа 293 К.

Также с увеличением мощности происходит увеличение цены водорода (рис. 5в). При мощности разряда 210 Вт, с достижением которой практически прекращается рост коэффициента конверсии и объема получаемого водорода и синтез-газа, цена водорода составляет 2.4 эВ.

Продолжающееся увеличение цены водорода при дальнейшем повышении мощности делает бессмысленным работу реактора с мощностью разряда, превышающей 210 Вт, при расходе водно-спиртового раствора 1.25 мл/мин и воздуха 0.8 л/мин.

На рис. 6 представлены зависимости коэффициентов конверсии от энергии, получаемой входящей в реактор газовой смесью объемом 1 см3 за время пребывания в реакторе.

При проведении расчетов полагалось, что тепловые потери в окружающую среду составляют ~ 35%. Обе кривые обладают общей тенденцией повышения коэффициента конверсии с ростом энерговклада.

Однако, на экспериментальной кривой наблюдается важный с практической точки зрения участок насыщения, отсутствие которого на расчетной кривой возможно объясняется недостаточной величиной энерговклада.

Литература

- 1. Conte E., Boulouchos K. // SAE Tech. 2004. Pap. 2004-01-0972.
- 2. Fridman A. Plasma Chemistry. Cambridge:Cambridge University Press, 2008.
- 3. Petitpasa G., Rolliera J.-D., Darmonb A.,Gonzalez-Aguilara J., Metkemeijera R., Fulcheria L Int. J. Hydrogen Energ. 2007. V. 32. P. 2848.
- 4. Zhdanok S. A., Krauklis A. V., Samtsov P. P, Suvorov A. V. J. Eng. Phys. Thermophys. 2006. V. 79. P. 1051.
- 5. Arkhipenko V.I., Kirillov A.A., Callegari T.,Safronau Ya.A., Simonchik L.V. // IEEE T. Plasma Sci. 2009. V. 37. P. 740.
- 6. Konnov, A. A. // Proceedings of the 28th International Symposium on Combustion, Edinburgh. Abs. Symp. Pap. 2000. P. 317.
- 7. Arkhipenko V.I., Zgirouski S.M., Karoza A.G., Kirillov A.A., Simonchik L.V. J. Appl. Spectrosc. 2013. V..80. P. 99.
 - 8. http://www.cfa.harvard.edu/HITRAN/

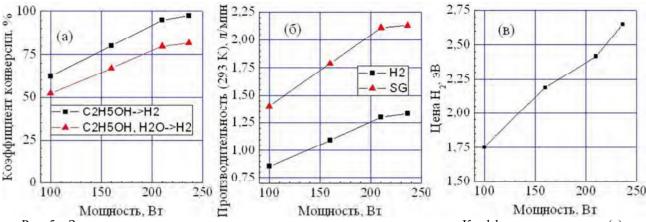


Рис. 5 – Зависимость от мощности разряда основных параметров конверсии. Коэффициент конверсии (a), производительность водорода и синтез-газа (б), цена водорода (в)

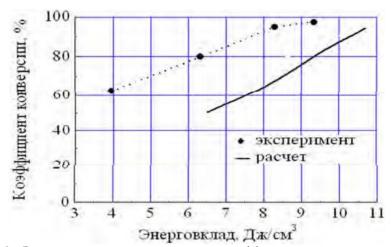


Рис. 6 – Экспериментальные и расчетные и коэффициенты конверсии этанола

EXPERIMENTAL AND THEORETICAL STUDY OF ETHANOL CONVERSION IN ATMOSPHERIC PRESSURE GLOW DISCHARGE

Arkhipenko V.I., Kirillov A.A., Safronau Y.A., Simonchik L.V., Migoun A.N., Chernukho A.P.

Abstract

Complex experimental and theoretical investigation of ethanol into syngas conversion assisted by a DC atmospheric pressure discharge with plasma cathode is presented. Numerical modeling of conversion kinetics is performed using Konnov model in accordance with assumption of thermal nature of the process.

СОЛҒЫН РАЗРЯДТА АТМОСФЕРА ҚЫСЫМЫНДА ЭТАНОЛДЫҢ КОНФЕРЦИЯСЫНЫҢ ТЕОРИЯЛЫҚ ЖӘНЕ ЭКСПЕРИМЕНТТІ ЗЕРТТЕУ ¹В.И Архипенко, ¹А.А. Кириллов, ¹Е.А. Сафронов, ¹Л.В. Симончик, ²А.Н.Мигун, ²А.П. Чернухо

¹Б.И. Степанов атындағы физика институты ҰҒА Беларусь, Минск қ., 220072, Тәуелсіздік даң., 68, е-mail:
²Ғылыми-өндірістік мекеме «Перспективалық зерттеулер және технология», 223058, Беларусь, Лесковка ауылы, Совхозная көш., 1,

Аннотация

Аталған жұмыста плазмалық катодта тұрақты тоқ арқылы разрядт қатысында этанолдың конверция кезіндегі синтез-газдың эксперименттік және теориялық зерттеулер көрсетілген. Жылу сиппаттамасының процестерімен сәйкестіре отырып Коннов моделі бойынша конверцияның кинетикалық шамасы бойынша сандық моделдер жасалынды.