УДК: 662.7

ВЛИЯНИЕ КВАНТОВЫХ ПОПРАВОК К КОНСТАНТАМ СКОРОСТЕЙ РЕАКЦИЙ НА ВРЕМЯ ТЕПЛОВОГО ВОСПЛАМЕНЕНИЯ ВОДОРОДНО-ВОЗДУШНЫХ СМЕСЕЙ

И.В.Кочетов, А.П.Напартович, Ю.В.Петрушевич, А.Н.Старостин, М.Д.Таран

ГНЦ РФ "Троицкий институт инновационных и термоядерных исследований" 142190 г. Москва, г. Троицк, ул. Пушковых, владение 12 E-mail: kochet@triniti.ru

Аннотация

Изучалось влияние квантовых поправок к константам скоростей химических реакций на время спонтанного воспламенения водородсодержащих смесей. Показано, что при высоких давлениях (30-100 атм) и относительно низких температурах (700-900 K) введение квантовых поправок, чтобы оценить коэффициент для реакции $H_2 + O_2 -> 2OH$, приводит к близким результатам измерений в зависимости от времени зажигания водорода, содержащего смеси и согласующиеся с опубликованными экспериментальными данными.

Ключевые слова: скорости реакции, тепловое воспламенение, водородно-воздушная смесь

Введение

В работах [1-5] было показано, что экспериментально измеренные времена воспламенения водородно-кислородных и водородновоздушных смесей при высоких давлениях (более 10 атм) заметно меньше, чем предсказываемые в расчетах. Для объяснения этого явления в работе [1] предлагался механизм ускорения воспламенения, связанный с образованием колебательно-возбужденного кислорода. В работах [2, 3] предлагался механизм ускорения воспламенения, связанный с десорбцией атомарного кислорода с металлических стенок камеры. Эффект основан на том, что реакционная способность атомарного кислорода гораздо выше, чем молекулярного. Уменьшение времени воспламенения в [4] авторы объясняют наличием пылевых частиц.

В работе [5] расхождение во времени воспламенения между теорией и экспериментом при невысокой начальной температуре газа и сравнительно невысоких давлений в ударных трубах объяснялся небольшим конструкционно обусловленным ростом давления.

Однако все перечисленные эффекты не позволили единым образом объяснить имеющиеся экспериментальные данные для воспламенения водорода в воздухе или кислороде при высоком давлении газа.

Следует отметить, что до сих пор сохраняется неопределённость в определении основных каналов реакций и, соответственно, информация о скоростях промежуточных ре-

акций недостаточно надёжна. В частности, для горения смеси H_2 и O_2 имеются различные кинетические модели, которые традиционно называются механизмами горения (см. [6] и цитируемую там литературу).

Отметим, что в литературе нет единого мнения по поводу основных каналов окисления водорода. Существует точка зрения, что эта реакция протекает в две стадии:

$$H_2 + O_2 -> H + HO_2,$$
 (1)

$$HO_2 + H -> 2OH.$$
 (2)

В работе Н. Н. Семёнова [7] был введен процесс:

$$H_2 + O_2 -> OH + OH,$$
 (3)

как одностадийный с энтальпией реакции 18.8 ккал/моль и с константой скорости, которая была им определена в узком температурном диапазоне (750÷800) К (см. Рис. 1).

Фундаментальный механизм ускорения воспламенения водородно-воздушных смесей при высоких давлениях и сравнительно низких температурах был впервые предложен в работе [8]. Этот механизм опирается на появление степенного "хвоста" в функции распределения молекул по кинетической энергии в области высоких энергий. Возникновение степенного хвоста вызвано квантовой неопределённостью энергии частицы, испытывающей частые столкновения.

Появление степенных хвостов, в отличие от экспоненциальной зависимости в распределении Максвелла, может привести к росту величины константы скорости химической реакции

В работе [8] приводятся формулы для вычисления поправок к константам скоростей экзотермических реакций в зависимости от температуры и давления газовой смеси. Эти поправки растут с увеличением давления и уменьшением температуры газа. Их роль может стать существенной даже в условиях, когда применимо приближение парных столкновений, т. е. при Nr_0^3 1 (где N — концентрация молекул, r_0 — эквивалентный радиус молекулы).

Согласно [8] квантовые поправки велики для констант скоростей химических реакций с большой высотой энергетического барьера (энергией активации). Реакция (3) удовлетворяет этому требованию. Отдельное исследование подтвердило, что наибольшее влияние на процесс воспламенения оказывает квантовая поправка для константы скорости реакции (3). В настоящей работе методом численного моделирования изучено влияние найденной квантовой поправки на время воспламенения сме-

сей водорода с воздухом при высоких давлениях и сравнительно низких температурах.

Константы скорости реакции $H_2 + O_2 -> OH + OH$

В работе [8] показано, что основной реакцией, квантовая поправка к которой вносит наибольший вклад в ускорение воспламенения, является эндотермическая реакция (3).

На Рис. 1 приведены зависимости константы скорости реакции (3) от температуры газа, взятые из работ [7-15] и базы данных NIST [16]. Анализ литературных данных показывает, что разброс экспериментально измеренных значений константы скорости этой реакции в широком диапазоне температур составляет около двух порядков. В таблице 1 приведены значения параметров для формулы, аппроксимирующей зависимость константы скорости прямой реакции (3) от температуры газа, и ссылки на литературные источники. Заметим, что все имеющиеся экспериментальные данные указывают на высокую энергию активации этой реакции 39 – 48 ккаль/моль.

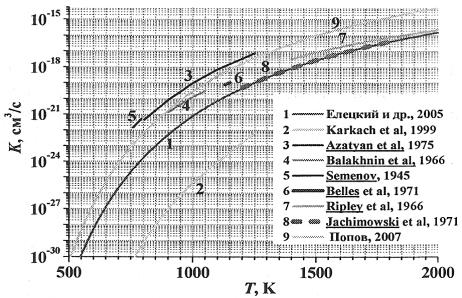


Рис. 1. Зависимости констант скоростей реакции $H_2 + O_2 => 2OH$ от температуры. Подчеркнуты ссылки, где приводятся экспериментальные результаты. Расшифровка ссылок приведена в таблице

Квантовая поправка к константе скорости реакции $H_2 + O_2 -> OH + OH$

На Рис. 2 показан профиль пути реакции (3). Согласно [8] квантовая поправка к реакции

(3) тем больше, чем больше энергия потенциального барьера E_r со стороны экзотермического направления.

К сожалению, в литературе нет точных данных о высоте барьера реакции E_r . Величина

его может быть оценена как энергия активации E_a , входящая в формулу Аррениуса для вычисления константы скорости эндотермической реакции, за вычетом хорошо известной тепло-

ты реакции E_0 ($E_r = E_a - E_0 = 48 - 18.8 = 29.2$ ккал/моль). Как видно из Таблицы 1, величина E_r лежит в диапазоне 20.2 - 51.3 ккал/моль.

Таблица 1 — Значения параметров в выражении для константы скорости реакции $H_2 + O_2 => 2OH$, $k(T) = A \left(\frac{T}{208}\right)^n e^{\frac{E_a}{RT}}$, $R = 1.9859 \cdot 10^{-3}$ ккал/моль· T^{-1}

$N_{\underline{0}}$	Первый автор и год	A , cm 3 /c	n	E_a ,	Источник	Ссылка
Π/Π				ккал/моль		
1	Елецкий и др, 2005	2.89·10 ⁻¹¹		48.1	Модель горения	[8]
2	Karkach et al, 1999	4.15·10 ⁻¹¹	0.44	69.1	Квантово-химические расчёты	[9]
3	Azatyan et al, 1975	3.16·10 ⁻¹⁰		43.5	эксп.	[10]
4	Balakhnin et al, 1966	4.17·10 ⁻¹²		39.0	эксп.	[11]
5	Semenov, 1945	1.32·10 ⁻⁹		45.0	эксп.	[7]
6	Belles et al, 1971	$2.74 \cdot 10^{-12}$		39.0	эксп.	[12]
7	Ripley et al, 1966	4.17·10 ⁻¹²		39.0	эксп.	[13]
8	Jachimowski et al, 1971	2.82·10 ⁻¹¹		48.15	эксп.	[14]
9	Попов, 2007	10 ⁻⁹		48	Модель горения	[15]

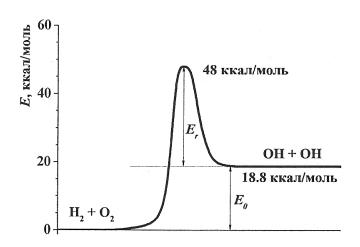


Рис. 2 – Профиль пути реакции Н2 + О2 -> ОН + ОН

Как показано в работе [8], в случае высокой плотности газовой среды, когда длина свободного пробега молекул мала, квантовая механика предсказывает наличие степенной зависимости функции распределения по кинетической энергии в асимптотической области. Наличие степенных "хвостов" в функции распределения молекул по энергиям приводит к квантовым поправкам к константам химических реакций $\mathbf{K} = K \cdot \delta$, где K – константа ско-

рости химической реакции без учета квантовых эффектов, соответствующая низкой плотности газа; δ - квантовая поправка, зависящая от химической реакции, давления и температуры газа.

В работе [17] получена более строгая и физически обоснованная, чем в [8], формула для величины квантовой поправки к величинам констант скоростей химических реакций:

$$\delta = 1 + \frac{1.12 \, P}{(E_T + T) \sqrt{T}} e^{\frac{E_T}{T}} \sum_l y_l \left(\sigma_{0al} \frac{1}{\sqrt{m_a}} \left(\frac{m_b}{m_a + m_b} \right)^{13/22} \left(\frac{m_a + m_l}{m_l} \right)^{1/11} + \sigma_{0bl} \frac{1}{\sqrt{m_b}} \left(\frac{m_a}{m_a + m_b} \right)^{13/22} \left(\frac{m_b + m_l}{m_l} \right)^{1/11} \right), (4)$$

где P — давление, атм;

T, E_r — температура и энергия барьера реакции, K;

 y_l — относительная мольная концентрация l-ой компоненты газовой смеси ($\sum_l y_l$);

 m_l — молекулярный вес l-ой компоненты газовой смеси: $\sigma_{0bl} = \sigma_{0al} = 2.8$ полное сечение упругого рассеяния молекул в единицах 10^{-15} см 2 при энергии E_r .

На Рис. $\overline{3}$ представлена зависимость квантовой поправки δ от температуры газа при

разных давлениях, рассчитанная по формуле (4) для $E_r = 23.4$ ккал/моль.

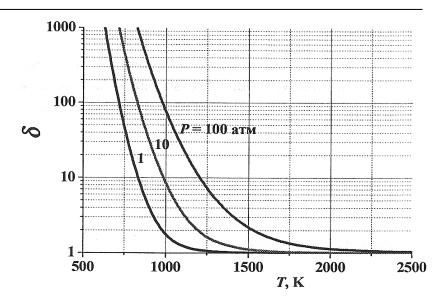


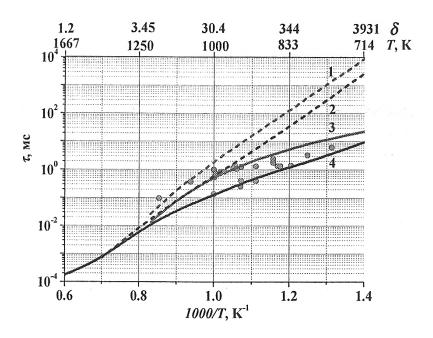
Рис. 3 – Квантовая поправка как функция температуры при различных давлениях. Смесь 15% Н₂-воздух

Результаты и их обсуждение

Расчет времени индукции осуществлялся программой Chemical Workbench (CWB 4.0.9150, www.kintech.ru) [18] с использованием механизма горения из [15].

На Рис. 4 точками показаны измеренные зависимости времени индукции au_{ind} от начальной температуры газовой смеси 15% Н2воздух при давлении 34.5-46.4 атм [4]. На нижней оси абсцисс приведена величина 1000/T, К⁻¹. На верхней оси абсцисс приведены температура T, K и величина квантовой поправки δ для $E_r = 23.4$ ккал/моль и давления 39.5 атм. Учет квантовой поправки в соответствии с формулой (4) при значении величины $E_r = 23.4$ ккал/моль приводит к разумному согласию расчётных времен воспламенения с имеющимися экспериментальными данными. На этом же рисунке показаны результаты расчетов, выполненных ранее в [19]. Учитывая неоднозначность существующих механизмов горения, были также выполнены расчёты воспламенения в рамках механизма KINTECH [20], в который добавили реакцию (3) с константой скорости, взятой из работы [15]. Введение квантовой поправки в константу реакции (3) дает результаты, близкие к приведенным на Рис. 4.

Заключение


Выполнено численное исследование влияния квантовых поправок к константам скоростей химических реакций в механизмах горения смесей, содержащих водород [15, 18], на время их теплового воспламенения. Показано, что различные механизмы при введении квантовых поправок к константе скорости реакции (3) при давлении 39.5 атм. дают близкие результаты в зависимости времени теплового воспламенения от начальной температуры газовой смеси, согласующиеся с опубликованными экспериментальными данными.

Работа выполнена в рамках госконтракта с Государственной корпорацией по атомной энергии "Росатом" № Н. 4Х. 44. 90. 13. 1106.

Литература

1. Воеводский В.В., Солоухин Р.И. // Доклады Академии Наук СССР. 1964. Т.154. С.1425.

- 2. Гельфанд Б.Е., Попов О.Е., Медведев С.П. и др. // Доклады Академии Наук. 1993. T.330. C.457.
- 3. Гельфанд Б.Е., Медведев С.П., Хомик С.В. и др. // Доклады Академии Наук. 1996. T.349. C.482.
- 4. Blumenthal R., Fieweger K., Komp K. H., Adomeint G., Gelfand B. E. // Proc. 20th ISSW, Eds. B. Sturtevant, J. E. Shepherd, H. Hornung, World Scientific. 1966. Vol. 2. p.935.

1, 3 — результаты работы [19]; 2, 4 — результаты данной работы; P = 39.5 атм., $15\%H_2$ -воздух

Рис. 4 – Зависимость времени воспламенения от начальной температуры.

Точки - экспериментальные данные [4]. Линии - результаты расчетов.

Сплошные - с учетом квантовой поправки, пунктирные - без учета квантовой поправки

- 5. Pang G.A., Davidson D.F., Hanson R.K. // Proceedings of the Combustion Institute. 2009. Vol.32. p.181.
- 6. A. A. Konnov // Combustion and Flame. 2008. Vol.152. p.507.
- 7. Semenov N. // Acta Physicochim. U.R.S.S. 1945. Vol.20. p.292.
- 8. Елецкий А.В., Старостин А.Н., Таран М.Д. // Успехи физических наук. 2005. Т.157. С.299.
- 9. Karkach S.P., Osherov V.I. // J. Chem. Phys.1999. Vol.110. p.11918.

10.Azatyan V.V., Aleksandrov E.N., Troshin A.F. //Kinet. Catal. 1975. Vol.16. p.306.

11.Balakhnin V.P., Gershenzon Yu.M., Kondrat'ev V.N., Nalbandyan A.B. // Dokl. Phys. Chem. (Engl. Transl.). 1966. Vol.170. p.659.

12.Belles F.E., Brabbs T.A. // Symp. Int. Combust.Proc. 1971. Vol.13. p.165.

- 13.Ripley D. L. Gardner W. C. Jr. // J. Chem. Phys. 1966. Vol.44. p.2285
- 14.Jachimowski C.J., Houghton W.M. // Combustion and Flame. 1971. Vol.17. p. 25.
- 15.Попов Н.А. // Теплофизика высоких температур. 2007. T.45. C.296.
- 16.NIST Chemical Kinetics Database: http://kinetics.nist.gov/kinetics/.
- 17.Дракон А.В., Емельянов А.В., Еремин А.В., ПетрушевичЮ.В., Старостин А.Н., Таран М.Д., Фортов В.Е. // ЖЭТФ. 2014. Т.145. С.943.
- 18.Deminsky M., Chorkov V., Belov G., Cheshigin I., Knizhnik A., Shulakova E., Shulakov M., Iskandarova I., Alexandrov V., Petrusev A., Kirillov I., Strelkova M., Umanski S., Potapkin B. // Comput. Mater. Sci. 2003. Vol.28. p.169.

19.Starostin A.N., Taran M.D., Petrushevich Y.V., Medvedev S.P., Agafonov

G.L., Khomik S.V. // 23rd ICDERS, Irvine. 2011. July 24-29.

20. Деминский М.А., Чернышева И.В., Уманский С.Я., Стрелкова М.И., Баранов А.Е.,

Кочетов И. В., Напартович А.П., Соммерер Т., Садюги С., Хербон Дж., Потапкин Б. В.// Химическая физика, 2013. Т.32. с.24.

THE INFLUENCE OF QUANTUM CORRECTIONS TO REACTION RATE CONSTANTS ON THE TIME OF HEAT IGNITION OF HYDROGEN-AIR MIXTURES

I.V.Kochetov, A.P.Napartovich, Yu.V.Petrushevich, A.N.Starostin, M.D.Taran

Troitsk Institute for innovation and fusion research RF, 142190, Moscow, Troitsk city, Pushkovih street, 12, E-mail: kochet@triniti.ru

Abstract

The influence of the quantum corrections for the rate constants of the chemical reactions on the spontaneous ignition time of hydrogen-containing mixtures was studied. It is shown that at high pressures (30-100 atm) and relatively low temperatures (700-900 K) introduction of quantum corrections to rate coefficient for reaction $H_2 + O_2 \rightarrow 2OH$ leads to better agreement between the predicted ignition time of hydrogen containing mixtures and published results of measurements.

СУТЕК-ОТТЕК ҚОСПАСЫНЫҢ ЖЫЛУЛЫҚ ТҰТАНУ УАҚЫТЫ КЕЗІНДЕГІ РЕАКЦИЯ ЖЫЛДАМДЫҒЫНЫҢ КОНСТАНТАСЫНЫҢ КВАНТТЫҚ ТҮЗЕТУДІҢ ӘСЕРІ

И.В. Кочетов, А.В. Напартович, Ю.В. Петрушевич, А.Н. Старостин, М.Д. Таран ГЦН РФ «Тройцкий атындығы инновациялық және термоядролық зерттеу институты», Тройск, 142190, Пушковых көш., 12, e-mail:kochet@trinitri.ru

Аннотация

Аталған жұмыста Сутек-оттек қоспасының аяқ астынан тұтану кезіндегі химиялық реакцияның жылдамдық константасының кванттық түзетулерінің әсері зерттелді. Жоғары қысымда (30-100 атм), төменгі температурада (700-900 К) реакция коэфицентін есептеу үшін $H_2+O_2=2OH$ кванттық түзетулер енгізілді. Аталған өзгеріс эксперименттік зерттеулер кезінде жарияланған мақалалардың нәтижелеріне жақындады.