УДК: 539.141;537.868.531

О ВЛИЯНИИ СОСТАВА СМЕСИ CH_4 + Ar НА ПАРАМЕТРЫ ПЛАЗМЫ И КИНЕТИКУ ПЛАЗМЕННОЙ ПОЛИМЕРИЗАЦИИ В УСЛОВИЯХ ТЛЕЮЩЕГО РАЗРЯДА ПОСТОЯННОГО ТОКА

Баринов С.М., Ефремов А.М., Кучумов А.А.

ФГБОУ ВПО «Ивановский государственный химико-технологический университет»153000, Иваново, просп. Ф. Энгельса, 7 E-mail: serg_barinov@mail.ru

Аннотация

С помощью комбинации экспериментальных и модельных методов были исследованы влияние CH₄/Ar на параметры плазмы, формирующих стационарные концентрации заряженных и нейтральных частиц, а также на темпы роста полимерной пленки. На этой основе приведены обсуждения некоторых возможных механизмов полимеризации.

Ключевые слова: смесь, аргон, плазма, кинетика, полимеризация

Введение

Низкотемпературная газоразрядная плазма смесей метана с инертными и молекулярными газами имеет широкий спектр применения в различных областях современной наукоемкой технологии. В частности, плазменные системы CH_4+Ar и CH_4+H_2+Ar используются при производстве изделий интегральной микро- и нано-электроники для «сухого» структурирования поверхности ряда полупроводников, металлов и их оксидов [1].

Кроме этого, смеси CH₄ с двуокисью углерода, водородом, азотом и аммиаком используются для плазмохимического осаждения поли- и монокристаллических алмазоподобных углеродных пленок, углеродных нанотрубок и нановолокон [2].

Реализация всех упомянутых технологий требует понимания взаимосвязей внешних (задаваемых) параметров плазмы и ее внутренних электрофизических характеристик, формирующих стационарные концентрации заряженных и нейтральных частиц.

Большинство предшествующих исследований плазмы смесей CH_4 +Ar (например, [3-6]) касаются смесей фиксированного (либо варьируемого в узких пределах) начального состава, при этом вопросы влияния именно начального состава смеси на электрофизические параметры плазмы и концентрации активных частиц при постоянных внешних параметрах разряда не получили должного внимания. Это обуславливает необходимость дополнительных

исследований физико-химических свойств плазмы в смесях метана с аргоном.

Экспериментальная часть

Плазма тлеющего разряда постоянного тока возбуждалась в стеклянном цилиндрическом (r = 1.3 см, l = 54 см) проточном реакторе. В качестве источника СН₄ использовался природный метан. Варьируемыми параметрами разряда служили ток (i = 30-50 мA) и общее давление (p = 40-200 Па). Расход газа (q) поддерживался постоянным на уровне 0.01 см³/с (при нормальных условиях). Начальный состав смеси СН₄+Аг задавался парциальными давлениями компонентов р_і. Мольные доли компонентов исходной смеси определялись как $y = p_i / p$. Напряженность электрического поля (E) в зоне положительного столба на оси разряда измерялась методом зондов Лангмюра. Температура газа (T) определялась спектральным методом по неразрешенной вращательной структуре полосы $\hat{N}_2(\hat{C}^3\Pi_u - B^3\Pi_u, 0 - 2)$.

Пленки осаждались на подложки, помещаемые в зону положительного столба разряда. Конструкция установки предусматривала возможность стабилизации температуры подложек в диапазоне T=40–400 °C. Скорость осаждения R_D определялась по изменению массы подложки Δm , измеряемому методом кварцевого резонатора. Измерение толщины пленок h производилось с помощью интерферометра МИИ-4М.

Моделирование плазмы

Моделирования плазмы базировалось на совместном решении стационарного кинетического уравнения Больцмана (без учета электрон-электронных соударений и ударов второго рода), уравнений химической кинетики нейтральных и заряженных частиц, а также уравнения электропроводности плазмы с учетом условия квазинейтральности [7]. Решение уравнения Больцмана проводилось в двухкомпонентном (только СН₄ и Аг) приближении по нейтральным невозбужденным частицам. Допустимость однокомпонентного подхода к плазме чистого метана обусловлена низкими степенями диссоциации СН₄ в исследованном диапазоне условий [8].

Выходными параметрами модели служили стационарные значения приведенной напряженности поля E / N (где $N = p/k_BT$ – общая концентрация частиц в реакторе), функции распределения электронов по энергиям (ФРЭЭ), интегральные характеристики

электронного газа (средняя энергия $\bar{\varepsilon}$, скорость дрейфа v_{ε} , приведенные значения коэффициента свободной диффузии $D_{\varepsilon}N$ и подвижности $\mu_{\varepsilon}N$), константы скоростей элементарных процессов и средние по объему плазмы концентрации частиц.

Результаты и их обсуждение

Изменение начального состава смеси от чистого метана к чистому аргону при p,i= const приводит к более чем двукратному снижению стационарных значений E/N (рис. 1). Это связано с одновременным снижением частот объемной $\boldsymbol{v_{da}}$ и гетерогенной (диффузионной) $\boldsymbol{v_{dif}}$ гибели электронов. Найденная в экспериментах и расчетах слабая зависимость E/N=f(i) характерна для диффузионного $(\boldsymbol{v_{da}} < \boldsymbol{v_{dif}})$ режима плазмы. Удовлетворительное согласие расчетных и экспериментальных значений E/N позволяет говорить об адекватности модели.

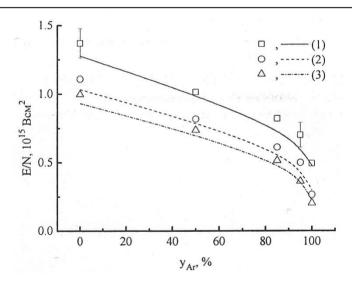


Рис. 1 — Приведенная напряженность электрического поля в плазме смеси $\mathrm{CH_4+Ar}$ при p=40 Па (1), 100 Па (2), 200 Па (3) и i=50 мА. Точки — эксперимент, линии — расчет

Изменение ФРЭЭ не согласуется с поведением E/N и сопровождается увеличением доли высокоэнергичных электронов и средней энергии электронов $\bar{\varepsilon}$ (табл. 1). Причиной этого является то, что снижение потерь энергии электронов на колебательное и электронное возбуждение молекул CH_4 при увеличении y_{Ar} не компенсируется аналогичными процессами

с участием атомов Ar. Отметим, что рост величины $\bar{\varepsilon}$ приводит к аналогичному изменению констант скоростей элементарных процессов, пороговая энергия которых удовлетворяет условию $\varepsilon_{th} \geq \bar{\varepsilon}$. Снижение скорости дрейфа ν_{ε} электронов вызвано уменьшением крутизны средней части Φ PЭЭ.

Таблица 1 — Средняя энергия ($\bar{\varepsilon}$, эВ), скорость дрейфа (ν_{ε} , 10^6 см/с) и эффективный коэффициент диффузии (D'_{ε} , 10^4 см²/с) электронов в плазме смеси СН₄+Ar при p=100 Па, i=50 мА

y_{Ar}	0	0.5	0.85	0.95	1
Ē	4.38	4.63	5.09	5.31	5.43
ν_e	8.87	7.15	5.19	4.08	2.86
D_s'	5.58	5.35	5.20	4.27	3.48

Эффективный коэффициент диффузии электронов D_e^i , определяющий величину v_{dif} , снижается как с ростом p при любом фиксированном составе смеси, так и с ростом y_{Ar} при p,i = const (табл. 1). Первый эффект связан с аналогичными изменениями средней энергии

электронов, а второй – со снижением электроотрицательности плазмы (рис. 2) и переходом к чисто амбиполярному режиму диффузии. В обоих случаях это обеспечивает увеличение концентрации электронов в плазме (рис. 2).

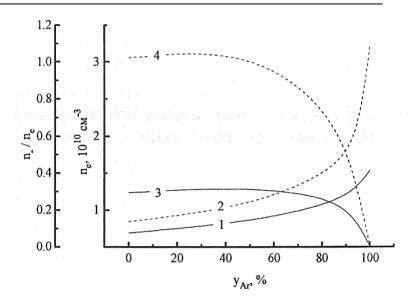


Рис. 2 — Концентрация электронов (1, 2) и относительная концентрация отрицательных ионов (3, 4) в плазме смеси CH_4 +Ar при i = 50 мA, p = 40 Па (1, 3) и 200 Па (2, 4)

Диапазон изменения n_e при варьировании y_{Ar} зависит от давления газа (например, в 2.2 раза при p=40 Па и в 3.8 раза при p=200 Па, i=50 мА). Это связано с тем, что в области высоких давлений имеют место максимальные изменения v_{da} и D_s' при переходе от чистого метана к чистому аргону.

Суммарная концентрация положительных ионов в условиях n_-/n_e < 1 следует изменению n_e (рис. 3). Физически, это обеспечивается снижением коэффициента D_+ диффузии и частоты диффузионной гибели ионов из-за снижения длины свободного пробега (при увеличении давления газа), эффективного размера и массы доминирующего иона (при увеличении y_{Ar}). Спадающая зависимость $D_+ = f(p)$ компенсирует увеличение n_+ , что приводит к снижению плотности потока ионов на стенку

реактора с ростом p при любом фиксированном составе смеси. Напротив, разбавление метана аргоном в условиях p = const сопровождается увеличением интенсивности ионной бомбардировки поверхности, ограничивающей зону плазмы.

Основными стабильными нейтральными продуктами плазмохимических реакций в плазме чистого метана в исследуемом диапазоне условий являются H_2 , C_2H_2 и C_2H_6 [8, 9] (рис. 4). Среди первичных продуктов диссоциации метана доминируют H и CH_3 . Концентрации радикалов CH_2 и CH существенно ниже по сравнению с CH_3 [8, 10]. Причиной этого являются низкие скорости их генерации при электронном ударе и высокие частоты гибели в атомно-молекулярных реакциях.

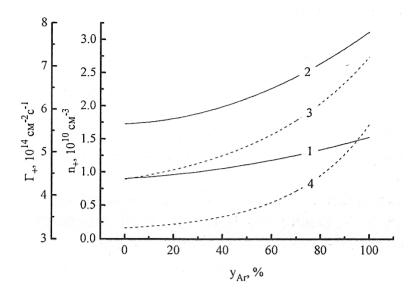


Рис. 3 — Концентрация (1, 2) и плотность потока (3, 4) положительных ионов в плазме смеси CH_4 +Ar при i = 50 мA, p = 40 Па (1, 3) и 200 Па (2, 4)

Разбавление метана аргоном в условиях, p,i = const сопровождается как ростом эффективности диссоциации электронным ударом, так и заметным вкладом ступенчатой диссоциации с участием метастабильных атомов $Ar^*(^3P_{0-2})$ в общую скорость разложения молекул при $y_{Ar}>90\%$. В результате, зависимости концентраций CH_3 , CH_2 , CH и H от начального

состава смеси CH_4 +Ar не коррелируют с изменением параметра $1-y_{Ar}$. Так, концентрации CH_3 и H остаются практически постоянными вплоть до 85% Ar в смеси, при этом концентрации CH_2 и CH демонстрируют ярко выраженный максимум при y_{Ar} = 90% (рис. 4).

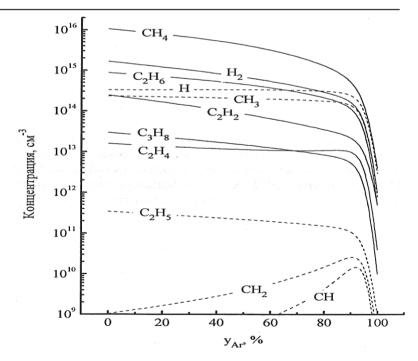


Рис. 4 — Концентрации нейтральных частиц в плазме смеси CH_4 +Ar при i = 50 мA, p = 100 Па

Эксперименты показали, что кинетические зависимости роста полимерной пленки близки к линейным как в плазме чистого мета-

на (рис. 5), так и в смесях СН₄+Аг фиксированного состава.

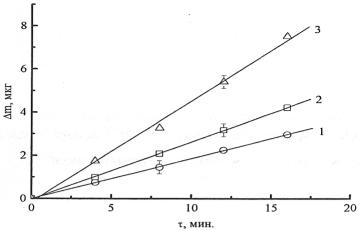


Рис. 5 — Кинетика роста пленок, осаждаемых в тлеющем разряде в метане при $p=100~\Pi a,~i=30~\text{мA}~(1),~50~\text{мA}~(2)$ и 70 мA (3)

Данный факт свидетельствует о том, что процесс осаждения протекает стационарно, в кинетическом режиме. Зависимость скорости осаждения и толщины пленки от начального

состава смеси при p,i = const не линейна и характеризуется постоянством обоих параметров вплоть до y_{Ar} = 40-50%.

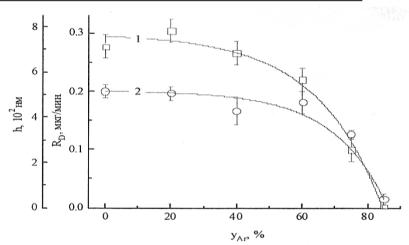


Рис. 6 – Зависимость скорости осаждения (1) и толщины (2, для t=30 мин) пленки от доли Ar в смеси при p=100 Па, i=70 мА

По нашему мнению, такое поведение величин R_D и h формально не противоречит как радикальному, так и радикально-ионному механизмам полимеризации [11]. Так, в первом случае, полагая, что основными полимеробразующими частицами являются радикалы СН2 и СН, постоянство скорости осаждения при степенях разбавления метана аргоном менее 40-50% может быть обусловлено конкуренцией увеличения скоростей связывания радикалов с поверхностью и травления пленки атомами водорода [2,10] и/или ионной бомбардировкой. Радикально-ионный механизм полимеризации предполагает, что основными полимеробразующими частицами являются радикалы СН₃, при этом раскрытие дополнительных С-Н связей, необходимых для формирования пленки, обеспечивается ионной бомбардировкой поверхности.

Сравнение данных рис. 4 и 6 позволяет говорить об удовлетворительном качественном согласии в поведениях плотности потока радикалов $\mathrm{CH_3}$ и скорости осаждения. Более быстрое снижение скорости осаждения в области $y_{Ar} > 50\%$ также может быть обусловлено травлением пленки атомами водорода.

Рассмотренные данные позволяют сформулировать рекомендации по использованию системы СН₄+Аг в процессах плазменного травления, где полимеризация в большинстве случаев является паразитным фактором. Очевидно, что предпочтение здесь должно отда-

ваться смесям с y_{Ar} = 80-90%, которые обеспечивают существенное снижение скорости осаждения полимерной пленки при сохранении концентраций основных химически активных при травлении частиц — Н и CH₃ [12, 13] — практически на уровне чистого метана.

Литература

- 1. Eddy C.R., Leonhardt D., Douglass S.R., Shamamian V.A., Thoms B.D., Buler J.E // *J.Vac. Sci. Technol. A.* **1999.** V. 17. № 3. P. 780.
- 2. Mao M., Bogaerts A. // J. Phys. D: Appl. Phys. **2010**. V. 43. N. 205201.
- 3. ГерасимовЮ.А., Грачева Т.А., ЛебедевЮ.А. // *Химия высоких энергий*. **1984**. Т.18. N 4. С. 363.
- 4. ИвановЮ.А., Эпштейн И.Л. // *Химия* высоких энергий. **1984**. Т. 18. №5. С. 461.
- 5. Солдатова И.В., Котенев В.А. // *Физи-кохимия поверхности и защита материалов*. **2009**. Т. 45. № 6. С. 574.

- 6. Солдатова И.В., Котенев В.А. // *Физи-кохимия поверхности и защита материалов*. **2012**. Т. 48. № 2. С. 159-164.
- 7. Ефремов А. М., Юдина А. В., Светцов В. И. // *Теплофизика высоких температур*. **2012**. Т. 50. № 1. С. 33.
- 8. Семенова О. А., Ефремов А. М., Баринов С. М., Светцов В. И. // *Теплофизика высоких температур.* 2014. Т. 52. № 2. С. 1.
- 9. Gogolidest E., Buteaut C., Rhallabiz A., G. Turban. // *J. Phys. D: Appl. Phys.* **1994**. V.27. P. 818.
- 10.Herrbout D., Bogaerts A., Yan M., Gijbels R., Goedheer W., Dekempeneer E. // *J. Appl. Phys.* **2001**. V. 90. № 2. P. 520.
- 11. Ясуда X. Полимеризация в плазме. М.: Мир. 1988. 376 C.
- 12.Yu J. S., Lee Y. T. // J. Korean. Phys. Soc. **2000**. V.37. P.241.
- 13.Feurprier Y., Cardinaud Ch., Grolleau B., Turban G. // J. Vac. Sci. Technol. A. 1998. V.16. P.1552

ON THE EFFECT OF CH4 + AR MIXTURE COMPOSITION ON BOTH PLASMA PARAMETERS AND PLASMA POLYMERIZATION KINETICS UNDER THE CONDITION OF DC GLOW DISCHARGE

Barinov S.M., Efremov A.M., Kuchumov A.A.

Ivanovo State University of chemistry and technology, 7, F. Engels av., Ivanovo, 153000, E-mail: serg_barinov@mail.ru

Abstract

The effects of CH4/Ar mixing ratio on plasma parameters, steady-state densities of neutral and charged species as well as on polymer film growth rates were investigated using a combination of experimental and modeling methods. On this base, some possible polymerization mechanisms were discussed.

ТҰРАҚТЫ ТОҚТА СОЛҒЫН РАЗРЯДТА СН₄+Аr ҚОСПАСЫНЫҢ ПЛАЗМАЛЫҚ ПОЛИМЕРИЗАЦИЯСЫНЫҢ КИНЕТИКАСЫНЫҢ ӘСЕРІ

С.М. Баринов, А.М. Ефремов, А.А. Кучумов

ФГБОУ ВПО «Ивановскийдағы мемлекеттік химико-технологиялық университет», 153000, Иваново қ, Шереметьевский даң., 7, e-mail: serg_barinov@mail.ru

Аннотация

Моделдік әдіс пен комбинациялық эксперименттердің көмегімен CH₄+ Ar қоспасының плазмада нейтралды бөлшектер мен жұққан бөлшектердің стационарлы концентрацияда полимерли материалдың өсуін зерттелді. Осы алынған деректер негізінде полимеризацияның мүмкін болатын механизмдерінің талқылауы жасалынды.