Oxidation of methane on polyoxide catalysts

Authors

  • K. Dossumov Institute of Combustion Problems, Bogenbai Batyr st. 172, 050012, Almaty, Kazakhstan
  • G.Y. Yergazyieva Institute of Combustion Problems, Bogenbai Batyr st. 172, 050012, Almaty, Kazakhstan
  • L.K. Myltykbayeva Institute of Combustion Problems, Bogenbai Batyr st. 172, 050012, Almaty, Kazakhstan
  • U. Suyunbayev Institute of Combustion Problems, Bogenbai Batyr st. 172, 050012, Almaty, Kazakhstan
  • N. Asanov Institute of Combustion Problems, Bogenbai Batyr st. 172, 050012, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/

Keywords:

methane, catalysts, synthesis gas, conversion, temperature

Abstract

The effect of modifying additives of copper, neodymium and molybdenum on acidity and dispersity of nickel catalyst was studied by temperature-programmed desorption of ammonia and scanning electron microscopy methods. Their activity in the reaction of partial oxidation of methane (POM) and dry reforming of methane (DRM) were measured. The NiCuNdMo/Al2O3HZSM-5 was found to be the best catalyst. The intro-duction of molybdenum into the composition of NiCuNd/Al2O3HZSM-5 catalyst was determined to increase general acidity of the catalyst from 26,71∙10-4 to 29,46∙10-4 mol / gКt, and also it increases the dispersion of the active phases of the catalysts surface. This data of change positively affects the activity of the catalyst in POM reaction, concentration of hydrogen in the reaction product compared with NiCuNd / Al2O3HZSM-5 increases from 60 to 70 vol.%. The investigation of the catalytic activity of NiCuNdМо/Al2O3HZSM-5 catalyst in the reaction of DRM have shown, that equilibrium yield of H2 and CO is observed in the temperature range of 650-900 °C. The main product in the process of oxidative conversion of methane by oxygen is hydrogen, whereas in the process of oxidative conversion of methane by carbon dioxide synthesis gas is formed.

References

(1) Tsolakis A., Wyszynski M.L. Biogas Upgrade to Syn-Gas (H₂–CO) via Dry and Oxidative Reforming // International Journal of Hydrogen Energy. 2011. Vol. 36, № 1. P. 397–404.

(2) Valliyappan T., Bakhshi N.N., Dalai A.K. Pyrolysis of glycerol for the production of hydrogen or syn-gas // Bioresource Technology. 2008. Vol. 99. P. 4476–4483.

(3) Provendier H., Petit C., Kiennemann A., Foscolo P.U. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification // Biomass and Bioenergy. 2002. Vol. 22, № 5. P. 377–378.

(4) Rostrup-Nielsen J.R. New aspects of syngas production and use // Catalysis Today. 2000. Vol. 63, № 2–4. P. 159–164.

(5) Bharadwaj S.S., Schmidt L.D. Catalytic partial oxidation of natural gas to syngas // Fuel Processing Technology. 1995. Vol. 42, № 2–3. P. 109–127.

(6) Freni S., Calogero G., Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions // Journal of Power Sources. 2000. Vol. 87, № 1. P. 28–38.

(7) Das D., Veziroǧlu T.N. Hydrogen production by biological processes: a survey of literature // International Journal of Hydrogen Energy. 2001. Vol. 26, № 1. P. 13–28.

(8) Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO₂ for hydrogen production // Renewable and Sustainable Energy Reviews. 2007. Vol. 11. P. 401–425.

(9) Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I. Sustainable fermentative hydrogen production: challenges for process optimisation // International Journal of Hydrogen Energy. 2002. Vol. 27, № 11–12. P. 1339–1347.

(10) Kapdan I.K., Kargi F. Bio-hydrogen production from waste materials // Enzyme and Microbial Technology. 2006. Vol. 38, № 5. P. 569–582.

(11) Ghenciu A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems // Current Opinion in Solid State and Materials Science. 2002. Vol. 6, № 5. P. 389–399.

(12) Laosiripojana N., Assabumrungrat S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: the possible use of these fuels in internal reforming SOFC // Journal of Power Sources. 2007. Vol. 163, № 2. P. 943–951.

(13) Choudhary V.R., Mondal K.C. CO₂ reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO₃ perovskite-type mixed metal-oxide catalyst // Applied Energy. 2006. Vol. 83, № 9. P. 1024–1032.

(14) Schädel B.T., Duisberg M., Deutschmann O. Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst // Catalysis Today. 2009. Vol. 142, № 1–2. P. 42–51.

(15) Parizotto N.V., Rocha K.O., Damyanova S., Passos F.B., Zanchet D., Marques C.M.P., Bueno A.J.M.C. Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: Effect of Ag on the control of coke formation // Applied Catalysis A: General. 2007. Vol. 330. P. 12–22.

(16) Nurunnabi M., Fujimoto K., Suzuki K., Li B., Kado S., Kunimori K., Tomishige K. Promoting effect of noble metals addition on activity and resistance to carbon deposition in oxidative steam reforming of methane over NiO–MgO solid solution // Catalysis Communications. 2006. Vol. 7, № 2. P. 73–78.

(17) Mattos L.V., Oliveira E.R., Resende P.D., Noronha F.B., Passos F.B. Partial oxidation of methane on Pt/Ce–ZrO₂ catalysts // Catalysis Today. 2002. Vol. 77, № 3. P. 245–256.

(18) Al-Musa A., Shabunya S., Martynenko V., Al-Mayman S., Kalinin V., Al-Juhani M., Al-Enazy K. Partial oxidation of methane in an adiabatic-type catalytic reactor // Journal of Power Sources. 2014. Vol. 246. P. 473–481.

(19) Mansouri B., Rabia C., Thouvenot R., Bettahar M.M., Hocine S. Partial oxidation of methane over modified Keggin-type polyoxotungstates // Journal of Molecular Catalysis A: Chemical. 2013. Vol. 379. P. 255–262.

(20) Liu R., Yang M., Huang C., Weng W., Wan H. Partial oxidation of methane to syngas over mesoporous Co–Al₂O₃ catalysts // Chinese Journal of Catalysis. 2013. Vol. 34, № 1. P. 146–151.

(21) Boullosa-Eiras S., Zhao T., Vanhaecke E., Chen D., Holmen A. Partial oxidation of methane to synthesis gas on Rh/ZrₓCe₁–ₓO₂–Al₂O₃ // Catalysis Today. 2011. Vol. 178, № 1. P. 12–24.

(22) Hu J., Yu C., Bi Y., Wei L., Chen J., Chen X. Preparation and characterization of Ni/CeO₂–SiO₂ catalysts and their performance in catalytic partial oxidation of methane to syngas // Chinese Journal of Catalysis. 2014. Vol. 35. P. 8–20.

(23) Vella L.D., Villoria J.A., Specchia S., Mota B., Fierro J.L.G., Specchia V. Catalytic partial oxidation of CH₄ with nickel–lanthanum-based catalysts // Catalysis Today. 2011. Vol. 171, № 1. P. 84–96.

(24) Lunsford J.H. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century // Catalysis Today. 2000. Vol. 63, № 2–4. P. 165–174.

(25) Wang Y., Ohtsuka Y. CaO–ZnO catalyst for selective conversion of methane to C₂ hydrocarbons using carbon dioxide as the oxidant // Journal of Catalysis. 2000. Vol. 192, № 1. P. 252–255.

(26) Wang H.Y., Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support // Applied Catalysis A: General. 2000. Vol. 204, № 1. P. 143–152.

(27) Havran V., Duduković M.P., Lo C.S. Conversion of methane and carbon dioxide to higher value products // Industrial & Engineering Chemistry Research. 2011. Vol. 50, № 12. P. 7089–7100.

(28) Fan M.-S., Abdullah A.Z., Bhatia S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas // ChemCatChem. 2009. Vol. 1, № 2. P. 192–208.

(29) Dedov A.G., Loktev A.S., Moiseev I.I., Aboukais A., Lamonier J.F., Filimonov I.N. Oxidative coupling of methane catalyzed by rare earth oxides: unexpected synergistic effect of the oxide mixtures // Applied Catalysis A: General. 2003. Vol. 245, № 2. P. 209–220.

(30) Chen L.Y., Lin L.W., Xu Z.S., Li X.S., Zhang. Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst // Journal of Catalysis. 1995. Vol. 157, № 1. P. 190–200.

(31) Corma A., García H. Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems // Chemical Reviews. 2000. Vol. 102, № 2. P. 3837–3892.

(32) Марголис Л. Я. Жизнь гетерогенных катализаторов в химической реакции // Соросовский образовательный журнал. 1997. № 3. С. 64–68.

(33) Castro Luna A.E., Iriarte M.E. A continuous catalytic system for biodiesel production // Applied Catalysis A: General. 2008. Vol. 343, № 1. P. 10–16.

(34) Адаму А.А., Кислов В.Р., Скудин В.В. Материальный баланс углекислотной конверсии метана в мембранном реакторе-контакторе // Успехи в химии и химической технологии. 2014. Т. 28, № 10. С. 17–20.

(35) Веселов В. Научные основы каталитической конверсии углеводородов. Киев: Наука, 1977. 212 с.

(36) Lallemand M., Finiels A., Fajula F., Hulea V. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites // Applied Catalysis A: General. 2006. Vol. 301, № 2. P. 196–201.

(37) Si Z., Weng D., Wu X., Yang J., Wang B. Modifications of CeO₂–ZrO₂ solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O₂ // Catalysis Communications. 2010. Vol. 11, № 13. P. 1045–1048.

Downloads

Published

2014-06-10

How to Cite

Dossumov, K., Yergazyieva, G., Myltykbayeva, L., Suyunbayev, U., & Asanov, N. (2014). Oxidation of methane on polyoxide catalysts. Combustion and Plasma Chemistry, 12(2), 111-119. https://doi.org/10.18321/