SYNTHESIS OF GRAPHENE AND 2D TRANSITION METALS DICHALCOGENIDES (TMD) BY CVD
Keywords:
two-dimensional materials,, synthesis,, graphene,, transition metal dichalcogenidesAbstract
The aim of this review is to describe the modern problems of production and application graphene and 2D transition metal dichalcogenides (TMD). Review widely describing experimental parameters of synthesis polycrystalline and monocrystalline graphene layers by chemical vapor deposition (CVD). Considers processes of the sample preparation and the basics of multi-layer, single-layer films also single crystal atomic structures growth mechanisms. Performed a broad analysis of the influence of the deposition parameters, including precursors, substrates, atmospheric gas flows for the quality of graphene formation, as well as other 2D materials synthesized by CVD. Shown examples CVD growth of transition metals dichalcogenides by using various types of precursors and techniques. Explains mechanism of TMD crystal grains formation by sulfurization of tungsten and molybdenum oxides. Is shown that the development of CVD synthesis of 2D materials due to the rising demand for high-quality 2D materials for a variety of applications where highly controlled growing process is critically important. From this review, we can conclude that the complete controllable growing process of 2D materials by CVD method have not been achieved yet. Complete understanding of the epitaxy parameters impact is particular importance for the realization of a programmable control of the CVD growth in high-quality 2D materials growing. Discusses options of creating 2D heterostructures based on graphene and TMD. Сonclusion contains brief discussion about possible solutions the problems in synthesis of 2D materials by CVD.References
(1). L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, et al., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films, Science 340, (2013) (6138) 1311-3014.
(2). W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gatetunable photocurrent generation in vertical heterostructures of layered materials Nat. Nanotechnol. December 2013, Volume 8. No 12. P. 952.
(3). S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor, Nano Lett. 14. (2014). Р.2861.
(4). L.S. Oriol, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8 (2013) 497.
(5). A. Abderrahmane, P. Ko, T.V. Thu, S. Ishizawa, T. Takamura, A. Sandhu, Nanotechnology 25 (2014) 365202.
(6). N. Huo, S. Yang, Z. Wei, S. Li, J. Xia, J. Li, Sci. Rep. 4 (2014) 5209.
(7). G. Cunningham, D. Hanlon, M. Niall, G. Duesberg, J.N. Coleman, Nanoscale 7 (2015) 198.
(8). S. Yang, S. Tongay, Y. Li, Q. Yue, J. Xia, S. Li, J. Li, S. Wei, Nanoscale 6 (2014) 7226.
(9). K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666–669.
(10). E. S. Penev, V. I. Artyukhov, F. Ding and B. I. Yakobson, Adv. Mater., 2012, 24, 4956–4976.
(11). X. Zhang, H. Li and F. Ding, Adv. Mater., 2014, 26, 5488–5495.
(12). I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres and S. Smirnov, ACS Nano, 2011, 5, 6069–6076.
(13). P. R. Somani, S. P. Somani and M. Umeno, Chem. Phys. Lett., 2006, 430, 56–59.
(14). W. Feng, S. Lei, Q. Li and A. Zhao, J. Phys. Chem. C, 2011, 115, 24858–24864.
(15). T. Gao, S. Xie, Y. Gao, M. Liu, Y. Chen, Y. Zhang and Z. Liu, ACS Nano, 2011, 5, 9194–9201.
(16). C.-M. Seah, S.-P. Chai and A. R. Mohamed, Carbon, 2014, 70, 1–21.
(17). X. Li, W. Cai, L. Colombo and R. S. Ruoff, Nano Lett., 2009, 9, 4268–4272.
(18). M. Eizenberg and J. Blakely, Surf. Sci., 1979, 82, 228–236.
(19). J. Shelton, H. Patil and J. Blakely, Surf. Sci., 1974, 43, 493–520.
(20). J. W. May, Surf. Sci., 1969, 17, 267–270.
(21). A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 2009, 9, 30–35.
(22). A. J. Pollard, R. R. Nair, S. N. Sabki, C. R. Staddon, L. M. A. Perdigao, C. H. Hsu, J. M. Gar tt, S. Gangopadhyay, H. F. Gleeson, A. K. Geim and P. H. Beton, J. Phys. Chem. C, 2009, 113, 16565–16567.
(23). X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R.S. Ruoff, Science, 2009, 324, 1312–1314.
(24). W. Fang, A. Hsu, Y. C. Shin, A. Liao, S. Huang, Y. Song, X. Ling, M. S. Dresselhaus, T. Palacios and J. Kong, Nanoscale, 2015, 7, 4929– 4934.
(25). A. Ramasubramaniam, D. Naveh and E. Towe, Nano Lett., 2011, 11, 1070–1075.
(26). S. Lee, K. Lee and Z. Zhong, Nano Lett., 2010, 10, 4702–4707.
(27). K. Yan, H. Peng, Y. Zhou, H. Li and Z. Liu, Nano Lett., 2011, 11, 1106–1110.
(28). Y. Gong, X. Zhang, G. Liu, L. Wu, X. Geng, M. Long, X. Cao, Y. Guo, W. Li, J. Xu, M. Sun, L. Lu and L. Liu, Adv. Funct. Mater., 2012, 22, 3153–3159.
(29). Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang and P. Richard, Carbon, 2014, 73, 252–258.
(30). N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi and H. Marchetto, Adv. Funct. Mater. 2008, 18, 3506–3514.
(31). J. Hwang, M. Kim, D. Campbell, H. A. Alsalman, J. Y. Kwak, S. Shivaraman, A. R. Woll, A. K. Singh, R. G. Hennig, S. Gorantla, M. H. Rummeli and M. G. Spencer, ¨ ACS Nano, 2012, 7, 385–395.
(32). M. Wang, S. K. Jang, W.-J. Jang, M. Kim, S.-Y. Park, S.-W. Kim, S.-J. Kahng, J.-Y. Choi, R. S. Ruoff, Y. J. Song and S. Lee, Adv. Mater., 2013, 25, 2746–2752.
(33). J. Chen, Y. Guo, L. Jiang, Z. Xu, L. Huang, Y. Xue, D. Geng, B. Wu, W. Hu, G. Yu and Y. Liu, Adv. Mater., 2014, 26, 1348–1353.
(34). L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao and H.-M. Cheng, Nat. Commun., 2012, 3, 699.
(35). W. Wu, L. A. Jauregui, Z. Su, Z. Liu, J. Bao, Y. P. Chen and Q. Yu, Adv. Mater., 2011, 23, 4898–4903.
(36). A. W. Robertson and J. H. Warner, Nano Lett., 2011, 11, 1182–1189.
(37). X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, J. Am. Chem. Soc., 2011, 133, 2816–2819.
(38). H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie and W.-J. Zhang, J. Am. Chem. Soc., 2012, 134, 3627–3630.
(39). S. Chen, H. Ji, H. Chou, Q. Li, H. Li, J. W. Suk, R. Piner, L. Liao, W. Cai and R. S. Ruoff, Adv. Mater., 2013, 25, 2062–2065.
(40). Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell and J. M. Tour, ACS Nano, 2012, 6, 9110–9117.
(41). L. Gan and Z. Luo, ACS Nano, 2013, 7, 9480–9488.
(42). H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang and X. Duan, Nat. Commun., 2013, 4, 2096–2103.
(43). J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang and D. Whang, Science, 2014, 344, 286–289.
(44). T. Wu, G. Ding, H. Shen, H. Wang, L. Sun, D. Jiang, X. Xie and M. Jiang, Adv. Funct. Mater., 2013, 23, 198–203.
(45). Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu and Y. Liu, J. Am. Chem. Soc., 2012, 134, 11060–11063.
(46). Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen and J. H. Warner, ACS Nano, 2012, 6, 5010–5017.
(47). D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu and Y. Liu, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 7992– 7996.
(48). D. Geng, L. Meng, B. Chen, E. Gao, W. Yan, H. Yan, B. Luo, J. Xu, H. Wang, Z. Mao, Z. Xu, L. He, Z. Zhang, L. Peng and G. Yu, Adv. Mater., 2014, 26, 6423–6429.
(49). A. Mohsin, L. Liu, P. Liu, W. Deng, I. N. Ivanov, G. Li, O. E. Dyck, G. Duscher, J. R. Dunlap, K. Xiao and G. Gu, ACS Nano, 2013, 7, 8924–8931.
(50). Z. Yan, Y. Liu, L. Ju, Z. Peng, J. Lin, G. Wang, H. Zhou, C. Xiang, E. L. G. Samuel, C. Kittrell, V. I. Artyukhov, F. Wang, B. I. Yakobson and J. M. Tour, Angew. Chem., Int. Ed., 2014, 53, 1565–1569.
(51). H. Mehdipour and K. Ostrikov, ACS Nano, 2012, 6, 10276–10286.
(52). Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo and R. S. Ruoff, Science, 2013, 342, 720–723.
(53). C. W. Magnuson, X. Kong, H. Ji, C. Tan, H. Li, R. Piner, C. A. Ventrice, Jr. and R. S. Ruoff, J. Mater. Res., 2014, 29, 403–409.
(54). Z.-J. Wang, G. Weinberg, Q. Zhang, T. Lunkenbein, A. KleinHoffmann, M. Kurnatowska, M. Plodinec, Q. Li, L. Chi, R. Schloegl and M.-G. Willinger, ACS Nano, 2015, 9, 1506–1519.
(55). W. Hofmann, J. Mater. Sci., 1988, 23, 3981–3986.
(56). K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai and L.-J. Li, Nano Lett., 2012, 12, 1538–1544.
(57). Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small, 2012, 8, 966–971.
(58). Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater., 2012, 24, 2320–2325.
(59). B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi and C. Zhou, ACS Nano, 2014, 8, 5304– 5314.
(60). S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan and J. Lou, Nat. Mater., 2013, 12, 754–759.
(61). K. M. McCreary, A. T. Hanbicki, J. T. Robinson, E. Cobas, J. C. Culbertson, A. L. Friedman, G. G. Jernigan and B. T. Jonker, Adv. Funct. Mater., 2014, 24, 6449–6454.
(62). M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu and S. Rajan, Appl. Phys. Lett., 2013, 102, 252108.
(63). X. Wang, H. Feng, Y. Wu and L. Jiao, J. Am. Chem. Soc., 2013, 135, 5304–5307.
(64). A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller and J. C. Hone, Nat. Mater., 2013, 12, 554–561.
(65). Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui and Z. Liu, ACS Nano, 2013, 7, 8963–8971.
(66). Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair and J. H. Warner, Nanoscale, 2014, 6, 12096–12103.
(67). X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus and J. Kong, Nano Lett., 2014, 14, 464–472.
(68). J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, Appl. Phys. Lett., 2013, 102, 012111.
(69). M. Bernardi, M. Palummo and J. C. Grossman, Nano Lett., 2013, 13, 3664–3670.
(70). C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden and X. Xu, Nat. Mater., 2014,13, 1096–1101.
(71). X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang and X. Duan, Nat. Nanotechnol., 2014, 9, 1024–1030.
(72). X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang and Y.-H. Lee, Nano Lett., 2015, 15, 410–415.
(73). A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, "Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide," Nature Materials, vol. 12, pp. 554-561, Jun 2013.
(74). S.-C. Cheng, F. Sultanov, V. G. Hadjiev, S. S. Pei, and Z. Mansurov, "Nucleation ceners in highly crystalline monolayer molybdenum disulphide by chemical vapor deposition," (under preparation).
(75). L. L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. X. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, "Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics," Nano Letters, vol. 14, pp. 3055-3063, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Р. Е. Бейсенов, Е. Б. Алыбаев, Haixin Chang, Wenfeng Zhang, З.А Мансуров

This work is licensed under a Creative Commons Attribution 4.0 International License.


