THE STRUCTURE AND MORPHOLOGY OF CNTS OBTAINED ON Fe NANOPOWDERS BY LOW-TEMPERATURE CVD

Authors

  • G. Partizan The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • B.Z. Mansurov The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • B.S. Medyanova The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • А.B. Koshanova The Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • M.E. Mansurova Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • B.А. Aliyev Al-Farabi Kazakh National University, 050040, al-Farabi ave., 71, Аlmaty, Kazakhstan
  • Xin Jiang Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076, Siegen, Germany

Keywords:

thermal chemical vapor deposition,, carbon nanostructures,, iron nanopowders,, low-temperature synthesis of carbon nanotubes

Abstract

The article presents the results of experiments on the synthesis of carbon nanotubes by thermal chemical vapor deposition using iron nanopowders obtained by electric explosion of wire as catalysts. The process parameters that are optimal for low-temperature growth of carbon nanotubes have been identified during the performed experiments. Results of Raman spectroscopy and X-ray analysis showed that samples grown at temperatures below the normally used have the highest crystallinity. Studies by scanning electron microscopy using SE2 mode and results of transmission electron microscopy indicate that the synthesized structures are multi-walled carbon nanotubes with the metal clusters inside the channel of the tube. The experimental modes of synthesis of carbon nanotubes by low-temperature CVD using iron nanopowders as catalysts were found for the first time.

References

(1) Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603–605.

(2) Радушкевич, Л. В., & Лукьянович, В. М. (1952). O структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте. Журнал физической химии, 26, 88–95.

(3) Krueger, A. (2010). Carbon Materials and Nanotechnology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 475 p.

(4) Merchan-Merchan, W., Saveliev, A. V., Kennedy, L., & Jimenez, W. C. (2010). Combustion synthesis of carbon nanotubes and related nanostructures. Progress in Energy and Combustion Science, 36, 696–727.

(5) Сабитов, С., Кошанова, А., Медянова, Б. С., Партизан, Г., & Мансуров, Б. З. (2015). Синтез углеродных наноструктур на никелевых пленках методом кислородно-ацетиленовой горелки. Горение и плазмохимия, 13(1), 47–52.

(6) Szabó, A., Perri, C., Csató, A., Giordano, G., Vuono, D., & Nagy, J. B. (2010). Synthesis Methods of Carbon Nanotubes and Related Materials. Materials, 3, 3092–3140.

(7) Seo, J. W., Magrez, A., Milas, M., Lee, K., Lukovac, V., & Forro, L. (2007). Catalytically grown carbon nanotubes: From synthesis to toxicity. J. Phys. D: Appl. Phys., 40, 10–120.

(8) Purohit, R., et al. (2014). Procedia Materials Science, 6, 716–728.

(9) Буранова, Ю. С. (2011). Физика, электроника, нанотехнологии. Труды МФТИ, 3(3), 30–41.

(10) Лернер, М. И., Сваровская, Н. В., Псахье, С. Г., & Бакина, О. В. (2009). Технология получения, характеристики и некоторые области применения электровзрывных нанопорошков металлов. Российские нанотехнологии, 4(11-12), 56–68.

(11) Pakdee, U., Srabua, S., Phongphala, A., & Pawong, C. (2015). Effects of Catalyst on Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition Method. Applied Mechanics and Materials, 804, 47–50.

(12) Rashid, H. U., Yu, K., Umar, M. N., Anjum, M. N., Khan, K., Ahmad, N., & Jan, M. T. (2015). Catalyst role in chemical vapor deposition (CVD) process: a review. Rev. Adv. Mater. Sci., 40, 235–248.

(13) Лернер, М. И. (2007). Электровзрывные нанопорошки неорганических материалов: технология производства, характеристики, области применения: дис. …док. тех. наук: 01.04.07. – Томск: 325 с.

(14) Ильин, А. П. (2003). Развитие электровзрывной технологии получения нанопорошков в НИИ высоких напряжений при Томском политехническом университете. Известия ТПУ, 306(1), 133–139.

(15) Партизан, Г., Мансуров, Б. З., Медянова, Б. С., & Кошанова, А. Б. (2016). Исследование электровзрывных нанопорошков никеля. Горение и плазмохимия, 14(1). В печати.

(16) Partizan, G., Mansurov, B. Z., Medyanova, B. S., Aliev, B. A., & Jiang, X. (2015). Journal of Engineering Physics and Thermophysics, 88, 1151–1158.

(17) Partizan, G., Yao, M., Mansurov, B. Z., Medyanova, B. S., Xin, J., & Aliyev, B. A. (2014). SEM studies of carbon nanotubes synthesized on metal nanopowders. Proceedings of the Annual International World Conference on Carbon (Carbon 2014), Jeju Island, Korea, June 29 - July 4, POT2-01.

(18) Партизан, Г., Мансуров, Б. З., Алиев, Б. А., & Jiang, X. (2014). Низкотемпературный синтез углеродных наноструктур методом термического CVD на частицах нанопорошков железа. VIII Международный симпозиум “Физика и химия углеродных материалов / наноинженерия, Алматы, Казахстан, 17-19 сентября, 303–307.

(19) Partizan, G., Mansurov, B. Z., Aliyev, B. A., Medyanova, B. S., Xin, J., & Mansurov, Z. A. (2015). Low temperature growth of carbon nanostructures by thermal CVD on the particles of iron nanopowders. Proceedings of the Annual International World Conference on Carbon (Carbon 2015), Dresden, Germany, 12-17 July, 232.

(20) Буянов, Р. А., & Чесноков, В. В. (2005). О процессах, происходящих в металлических частицах при каталитическом разложении на них углеводородов по механизму карбидного цикла. Химия в интересах устойчивого развития, 13, 37–40.

(21) Buyanov, R. A., & Chesnokov, V. V. (2000). Regularities of Catalytic Formation of Carbon Composites for Various Purposes via Decomposition of Hydrocarbons on Iron Subgroup Metals. Eurasian ChemTech Journal, 2(3-4), 223–230.

(22) Vajtai, R. (2013). Single-Walled Carbon Nanotubes, Part A/4. Berlin: Springer, 118–119.

(23) Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601–608.

(24) Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 49, 2581–2602.

(25) Syazwan, A. M. Z., Suriani, A. B., Saifollah, A., Zulkarnain, Z., Siti, H. S., & Mohamad, R. (2012). Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition. Journal of Nanomaterials, 2012, 1–6.

(26) Kim, K. K., Park, J. S., Kim, S. J., Geng, H. Z., An, K. H., Yang, C.-M., et al. (2007). Dependence of Raman spectra G’ band intensity on metallicity of single-wall carbon nanotubes. Phys. Rev. B, 76(20), 1–8.

Downloads

Published

2016-06-20

How to Cite

Partizan, G., Mansurov, B., Medyanova, B., Koshanova А., Mansurova, M., Aliyev, B., & Jiang, X. (2016). THE STRUCTURE AND MORPHOLOGY OF CNTS OBTAINED ON Fe NANOPOWDERS BY LOW-TEMPERATURE CVD. Combustion and Plasma Chemistry, 14(2), 120-127. https://www.cpc-journal.kz/index.php/cpcj/article/view/499