Nuclear-chemical characteristics of subcritical thorium reactors with external neutron source: a review

Authors

  • Z. Insepov Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53, Kabanbay Batyr ave., Astana, Kazakhstan; School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA
  • A.A. Kalybay Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53, Kabanbay Batyr ave., Astana, Kazakhstan
  • Z.А. Mansurov Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • B.Т. Lesbaev Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A. Hassanein School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA
  • J. Alsar Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53, Kabanbay Batyr ave., Astana, Kazakhstan; Nanocomposite LTD, 54, Uly Dala ave., Astana, Kazakhstan

DOI:

https://doi.org/10.18321/cpc22(4)297-308

Keywords:

nuclear fuel, thorium, uranium, nuclear reaction, subcritical reactor

Abstract

Due to the deteriorating environmental situation, the problem of decarbonisation requires the use of all available low-carbon technologies. Nuclear power is one of the promising sources of low-carbon electricity and heat generation, which can contribute to achieving carbon neutrality. The development of nuclear power is impossible without a reliable supply of fuel material and this paper draws attention to the possibility of using weakly boron-radioactive thorium-232 (Th-232) as an alternative fuel for nuclear reactors. In this review, the advantages of using thorium fuel in different types of reactors such as light water reactors (LWRs), pressurised water reactors (PWRs) and molten salt reactors - liquid salt reactors (MSRs) are presented. It is shown that the thorium fuel cycle can be used in LWR and MSR reactor designs with minor technical changes. The advantages of the experimental Thorium-based Molten Salt Reactor (TMSR), which is being developed and implemented in China as a successful project to launch the thorium cycle as an alternative to conventional uranium-based fuel, are reviewed. In addition, the problems and reasons for the currently increased interest in the viability of the thorium fuel cycle are discussed.

References

(1). Pauluis G, Van den Durpel L (2001) NEA News 19.2:4-7.

(2). Galahom AA (2017) Nucl Eng Des 314:165-172. Crossref

(3). Schaffer MB (2011) Energy Policy 39:1382-1388. Crossref

(4). Schaffer MB (2013) Energy Policy 60:4-12. Crossref

(5). Heffron RJ, Ashley SF, Nuttall WJ (2016) Prog Nucl Energy 90:1-10. Crossref

(6). Hong S, Bradshaw CJ, Brook BW (2013) Energy Policy 56:418-424. Crossref

(7). Ault T, Krahn S, Croff A (2017) Ann Nucl Energy 110:726-738. Crossref

(8). Vijayan P, Shivakumar V, Basu S, Sinha R (2017) Prog Nucl Energy 101:43-52. Crossref

(9). Patel KS, Sharma S, Maity JP, Martín-Ramos P, Fiket Ž, Bhattacharya P, Zhu Y (2023) Front. Environ. Sci. 10:1058053. Crossref

(10). Galahom A, Abdelghafar A (2024) Nucl Eng Des 417:112817. Crossref

(11). Mohamed SA, Alnassar N, Abdel-Rahman MA, Galahom AA (2024) Prog Nucl Energy 173:105293. Crossref

(12). Brown NR, Powers JJ, Feng B, Heidet F, Stauff NE, Zhang G, Taiwo TA (2015) Nucl Eng Des 289:252-265. Crossref

(13). Chroneos A, Goulatis I, Daskalopulu A, Tsoukalas LH (2023) Prog Nucl Energy 164:104839. Crossref

(14). Galahom A, Abdelghafar A, Amr Ibrahim (2022) Nucl Eng Desn 398:111969. Crossref

(15). Jyothi RK, De Melo LGTC, Santos RM, Yoon HS (2023) Front. Energy Res 11:1132611. Crossref

(16). Zou CY, Cai CZ, Yu CG, Wu JH, Chen JG (2018) Nucl Eng Des 330: 420-428. Crossref

(17). Drera SS, Björk KI, Kelly JF (2014) Prog Nucl Energy 72:5-10. Crossref

(18). Ünak T (2000) Prog Nucl Energy 37: 137-144. Crossref

(19). Humphrey UE, Khandaker MU (2018) Renew Sustain Energy Rev 97:259-275. Crossref

(20). Pukhliy VA, Sofiyskiy IYu, Miroshnichenko ST (2010) The concept of thorium energy [Kontseptsiya torievoy energetiki] Sevastopol, SNUYaEiP (in Russian).

(21). Subbotin SA (2007) Nuclear strategy [Atomnaya strategiya]. 6:28.

(22). Van Gosen BS, Tulsidas H (2016) Woodhead Publishing: 253-296. Crossref

(23). Lainetti PE (2016) Journal of Energy and Power Engineering 10:600-605. Crossref

(24). Rubbia C (2016) A future for thorium power?. In Thorium Energy for the World: Proceedings of the ThEC13. Conference, CERN, Globe of Science and Innovation, Geneva, Switzerland P. 9-25. Crossref

(25). Titarenko YE, Ananev SS, Batyaev VF, Belousov VI, Blandinskiy VY, Chernov KG, Konobeyev AY (2023) Fusion Sci. Techno 79(2):117-134. Crossref

(26). Mammadzada E, Kara A (2024) Nucl Eng Des 424:113306. Crossref

(27). Arbuzov B.A (1997) Soros Educational Journal [Sorosovskiy obrazovatelnyy zhurnal] 1:73-78.

(28). Bell GI (1967) Physical Review 158(4): P. 1127. Crossref

(29). Nix JR (1969) Nucl Phys A 130(2):241-292. Crossref

(30). Bolsterli M, Fiset EO, Nix JR, Norton JL (1972) Phys Rev C 5(3):1050. Crossref

(31). Internet newspaper «Energy». Physical principles of operation of nuclear reactors [Fizicheskie osnovy raboty yadernykh reaktorov]. URL

(32). Liu B, Zhang X, Liu F, Dou W, Wang J (2022) Nucl Eng Des 386:111567. Crossref

(33). Manwaring N, Borrelli RA (2023) Nucl Eng Des 401:112040. Crossref

(34). Ma Y, Zhong R, Yu H, Huang S, Tian C, He X, Chai X (2022) Prog Nucl Energy 153:104405. Crossref

(35). Alternate Fuels: Thorium and Uranium-233. Report to Congress, 2023. US Department of Energy.

(36). Pauzi AM, Abdul Wahid AW, Saad JM (2019) IOP Conf Series: Mater Sci Engin 555:012006. Crossref

(37). Khassaneyn A, Kalabaev AA, Insepov Z (2024) Thorium as a potential nuclear fuel. Collection COR 28 UAE Some problems of decarbonization and alternative energy [Toriy kak potentsialnoe yadernoe toplivo. Sbornik COR 28 UAE Nekotorye problemy dekarbonizatsii i alternativnoy energetiki], Almaty.

(38). Lau CW, Nylén H, Demaziere C, Sandberg U (2014) Prog Nucl Energy 76:137-147. Crossref

(39). Uguru EH, Sani SA, Khandaker MU Rabir MH (2020) Prog Nucl Energy 118:103108. Crossref

(40). van der Walt HB, van Niekerk F, Reitsma F (2023) Nucl Eng Des 408:112319. Crossref

(41). Ahmad A, McClamrock EB, Glaser A (2015) Ann. Nucl. Energy 75:261-267. Crossref

(42). Tan ML, Zhu GF, Zhang ZD, Zou Y, Yu XH, Yu CG, Yan R (2022) Nucl Sci Tech 33(1):5. Crossref

(43). Björk KI, Netterbrant C (2018) Ann Nucl Energy 113:470-475. Crossref

(44). Insulander Björk K, Lau CW, Nylén H, Sandberg U (2013) Sci Technol Nucl Install 1:67561. Crossref

(45). Schaffer MB (2013) Energy Policy 60:4-12. Crossref

(46). Azeez S, Dick P, Hopwood J (2011) The Enhanced CANDU 6 TM Reactor-Generation III CANDU Medium Size Global Reactor // In Proceedings of an International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21. Century, Vienna.

(47). Mallapaty S (2021) Nature 597(7876):311-312. Crossref

(48). Bettis ES, Robertson Roy C (1970) Nuclear applications and technology, 190-207. Crossref

(49). Serp J, Allibert M, Beneš O, Delpech S, Feynberg O, Ghetta V, Zhimin D (2014) Prog. Nucl. Energ 77:308-319. Crossref

(50). Harto AW (2012) AIP Conf Proc 1448(1):82-95. Crossref

(51). Li GC, Cong P, Yu CG, Zou Y, Sun JY, Chen JG, Xu HJ (2018) Prog Nucl Energy 108:144-151. Crossref

(52). Intern. Atomic Energy Agency-1450 (2005) Th fuel cycle - Potential benefits and challenges. URL

Downloads

Published

2024-12-24

How to Cite

Insepov, Z., Kalybay, A., Mansurov, Z., Lesbaev, B., Hassanein, A., & Alsar, J. (2024). Nuclear-chemical characteristics of subcritical thorium reactors with external neutron source: a review. Combustion and Plasma Chemistry, 22(4), 297-308. https://doi.org/10.18321/cpc22(4)297-308