Synthesis of Co3O4 NPs by solution combustion synthesis (SCS) and their structure morphology: a mini review

Authors

  • Z.A. Mansurov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan
  • Muhammad Hashami Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai batyr str., Almaty, Kazakhstan; Institute of Higher Education Mirwais Khan Nika Zabul, Qalat, Afghanistan

DOI:

https://doi.org/10.18321/cpc23(1)53-62

Keywords:

Co3O4 nanoparticles, SCS method, porosity, sensitive sensors, energy storage

Abstract

This mini-review aims to present the current status of knowledge about cobalt oxide Co3O4 nanoparticles more precisely obtained by solution combustion synthesis, which is a process characterized by its high reaction rate and low cost. Unique features of cobalt (II)(III) oxide Co3O4 nanoparticles are size between 12 and 60 nm, and high surface area and porosity that enhances their performances in fields such as energy storage, environmental and sensing applications. By analysis of various synthesis parameters such as fuel-to-oxidizer ratios, precursor materials, and thermal conditions, this review elucidates how these factors influence particle characteristics and functionality. Furthermore, while extensive research highlights the efficacy of Co3O4 nanoparticles in energy applications, there is a notable need to further studies focusing on their environmental applications, appealing to young scientists to come up with improved solution seeking innovative research areas of nanotechnology and material science. The review offers more avenues for using Co3O4 nanoparticles in solving some of the pressing global environmental issues.

References

(1) Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R (2019) J Chem Rev 1(4):260-270

(2) El-Shafie AS, Ahsan I, Radhwani M, Al-Khangi MA, El-Azazy MS (2022) Nanomaterials 12(3):379. Crossref

(3) Poonguzhali RV, Kumar ER, Srinivas C, Alshareef M, Aljohani MM, Keshk AA, Arunadevi N (2023) Sens Actuators B Chem 377:133036. Crossref

(4) Raimundo RA, Lourenço CS, Câmara NT, Silva TR, Santos JR, Araújo AJ, Soares MM (2023) J Electroanal Chem 932:117218. Crossref

(5) Deng J, Kang L, Bai G, Li Y, Li P, Liu X, Yang Y, Gao F, Liang W (2014) Electrochim Acta 132:127-135. Crossref

(6) Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU, Ali M (2021) Open Life Sci 16(1):14-30. Crossref

(7) Ashok A, Kumar A, Tarlochan F (2018) Nanomaterials 8(8):604. Crossref

(8) Bayati-Komitaki N, Ganduh SH, Alzaidy AH, Salavati-Niasari M (2024) Biomed Pharmacother 180:117457. Crossref

(9) Mahmood ZH, Jarosova M, Kzar HH, Machek P, Zaidi M, Dehno Khalaji A, Khlewee IH, Altimari US, Mustafa YF, Kadhim MMS (2022) J Chin Chem Soc 69(4):657-662. Crossref

(10) Mimani T, Patil KC (2001) Mater Phys Mech 4(2):134-137.

(11) Murayama M, Kobayashi N, Matsushima Y, Unuma H (2019) J Ceram Soc Jpn 127(10):741-746. Crossref

(12) Chauhan A, Kumar R, Devi S, Raizada P, Singh P, Ponnusamy VK, Selvasembian R (2024) Surf Interfaces 54:105152 Crossref

(13) Babu CR, Avani AV, Shaji S, Anila EI (2024) J Solid State Electrochem 28(7):2203-2210. Crossref

(14) Alem AF, Worku AK, Ayele DW, Wubieneh TA, Teshager AA, Admasu BT, Yemata TA (2023) Heliyon 9(2):e13286. Crossref

(15) Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Chem Rev 116(23):14493-14586. Crossref

(16) Smagulova GT, Kim S, Prikhod’ko NG, Lesbayev BT, Mironenko AV, Zakhidov AA, Mansurov ZA (2016) Int J Self-Propag High-Temp Synth 25:173-176. Crossref

(17) Mansurov ZA (2012) Chemical Bulletin of Kazakh National University 67(3):9-15. Crossref

(18) Farhadi S, Javanmard M, Nadri G (2016) Acta Chim Slov 63(2):335-343. PMID: 27333557

(19) Vennela AB, Mangalaraj D, Muthukumarasamy N, Agilan S, Hemalatha KV (2019) Int J Electrochem Sci 14(4):3535-3552. Crossref

(20) Sahoo P, Djieutedjeu H, Poudeu PFP (2013) J Mater Chem A 1(47):15022-15030. Crossref

(21) Teng F, Chen MD, Li GQ, Teng Y, Xu TG, Hang YC, Zhu YF (2011) Appl Catal B Environ 110:133-140. Crossref

(22) Wang SB, Zhao CC, Li SG, Sun YH (2017) Phys Chem Chem Phys 19:30874-30882. Crossref

(23) Trivedi S, Prasad R (2016) J Environ Chem Eng 4: 1017-1028. Crossref

(24) Anele A, Obare S, Wei J (2022) Nanomaterials 12(7):1129. Crossref

(25) Bhargava R, Khan S, Ahmad N, Ansari MMN (2018) AIP Conf Proc 1953(1):1-6.

(26) Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2020) Not Bot Horti Agrobo 48(3): 1260-1275. Crossref

(27) Keneshbekova A, Imash A, Kaidar B, Yensep E, Ilyanov A, Artykbayeva M, Prikhodko N, Smagulova G (2023) Combust Plasma Chem 21(3):159-171. Crossref

(28) Acedera RAE, Gupta G, Mamlouk M, Balela MDL (2020) J Alloys Compd 836:154919. Crossref https://doi.org/10.1016/j.jallcom.2020.154919

(29) Kumar GP, Jawahar IN, Biju V (2021) J Mater Sci Mater Electron 32(11):14919-14931. Crossref

(30) Zhang L, Zhao X, Ma W, Wu M, Qian N, Lu W (2013) CrystEngComm 15(7):1389-1396. Crossref

(31) Rashad M, Rüsing M, Berth G, Lischka K, Pawlis A (2013) J Nanomater 2013(1):714853. Crossref

(32) Michalska M, Xu H, Shan Q, Zhang S, Dall'Agnese Y, Gao Y, Krajewski M (2021) Beilstein J Nanotechnol 12(1):424-431. Crossref

(33) Halder S, Roy S, Roy S, Chakraborty C (2023) J Phys Chem C 127(37):18279-18290. Crossref

(34) Singhal A, Bisht A, Kumar A, Sharma S (2016) J Electroanal Chem 776:152-161. Crossref

(35) Mumtaz M, Mumtaz A (2025) Mater Sci Eng B 314:117988. Crossref

(36) Zhao J, Zheng C, Gao J, Gui J, Deng L, Wang Y, Xu R (2021) Sens Actuators B Chem 347:130653. Crossref

Downloads

Published

2025-03-25

How to Cite

Mansurov, Z., & Hashami, M. (2025). Synthesis of Co3O4 NPs by solution combustion synthesis (SCS) and their structure morphology: a mini review. Combustion and Plasma Chemistry, 23(1), 53-62. https://doi.org/10.18321/cpc23(1)53-62