Effect of sodium and magnesium oxides on the sorption properties of natural zeolite Shankanai

Authors

  • M.M. Mambetova Institute of Combustion Problems, Bogenbai Batyr St. 172, Almaty, Kazakhstan; Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan https://orcid.org/0000-0002-1744-3647
  • M. Anisova Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan https://orcid.org/0000-0001-9622-5164
  • L.K. Myltykbaeva Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan https://orcid.org/0000-0002-0322-0135
  • N.M. Makaeva Institute of Combustion Problems, Bogenbai Batyr St. 172, Almaty, Kazakhstan; Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan https://orcid.org/0000-0002-1638-7460
  • K. Dosumov Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan
  • T.V. Shakieva Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan
  • G.E. Yergazieva Institute of Combustion Problems, Bogenbai Batyr St. 172, Almaty, Kazakhstan; Al-Farabi KazNU, Institute of New Chemical Technologies and Materials, Al-Farabi Ave. 71, Almaty, Kazakhstan https://orcid.org/0000-0001-9464-5317

DOI:

https://doi.org/10.18321/cpc23(2)153-161

Keywords:

natural zeolite, sorbents, carbon dioxide, CO2 capture, adsorption

Abstract

The paper presents a study of the effect of chemical modification of natural Shankanay zeolite with sodium and magnesium oxides on its sorption properties for carbon dioxide (CO2) at high temperatures. The sorbents were obtained by mixing followed by the introduction of 10 wt.% Na2O or MgO. A comprehensive characterization of the samples was carried out using X-ray phase analysis (XRD), scanning electron microscopy (SEM) and temperature-programmed desorption of CO2 (TPD-CO2). It was found that the Na2O modification significantly increases the number of strong basic centers, providing a high sorption capacity of up to 33.5% at 400 °C. The cyclic tests (16 cycles) showed satisfactory stability of the sorbent. The results indicate the promise of zeolite Na₂O/Sh 6/1 as an effective high-temperature CO2 sorbent. 

References

(1) W. Gao, T. Zhou, Y. Gao, B. Louis, D. O’Hare, Q. Wang, Molten Salts-Modified MgO-Based Adsorbents for Intermediate-Temperature CO₂ Capture: A Review, J. Energy Chem. 26 (2017) 830–838. Crossref

(2) H.J. Yoon, S. Mun, K.B. Lee, Facile Reactivation of Used CaO-Based CO₂ Sorbent via Physical Treatment: Critical Relationship between Particle Size and CO₂ Sorption Performance, Chem. Eng. J. 408 (2021) 127234. Crossref

(3) A.-T. Vu, K. Ho, S. Jin, C.-H. Lee, Double Sodium Salt-Promoted Mesoporous MgO Sorbent with High CO₂ Sorption Capacity at Intermediate Temperatures under Dry and Wet Conditions, Chem. Eng. J. 291 (2016) 161–173. Crossref

(4) D. Jansen, M. Gazzani, G. Manzolini, E. van Dijk, M. Carbo, Pre-Combustion CO₂ Capture, Int. J. Greenh. Gas Control 40 (2015) 167–187. Crossref

(5) S. Kim, H.J. Yoon, C.H. Lee, K.B. Lee, Effects of Alkali-Metal Nitrate Salts on Hydrotalcite-Based Sorbents for Enhanced Cyclic CO₂ Capture at High Temperatures, J. CO₂ Util. 77 (2023) 102610. Crossref

(6) E. Davarpanah, S. Hernández, G. Latini, C.F. Pirri, S. Bocchini, Enhanced CO₂ Absorption in Organic Solutions of Biobased Ionic Liquids, Adv. Sustain. Syst. 4 (2020) 1900067. Crossref

(7) L.K.G. Bhatta, S. Subramanyam, M.D. Chengala, S. Olivera, K. Venkatesh, Progress in Hydrotalcite like Compounds and Metal-Based Oxides for CO₂ Capture: A Review, J. Clean. Prod. 103 (2015) 171–196. Crossref

(8) R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Potential Applications of Metal-Organic Frameworks, Coord. Chem. Rev. 253 (2009) 3042–3066. Crossref

(9) M.G. Plaza, S. García, F. Rubiera, J.J. Pis, C. Pevida, Post-Combustion CO₂ Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies, Chem. Eng. J. 163 (2010) 41–47. Crossref

(10) N. Gargiulo, A. Verlotta, A. Peluso, P. Aprea, D. Caputo, Modeling the Performances of a CO₂ Adsorbent Based on Polyethylenimine-Functionalized Macro-/Mesoporous Silica Monoliths, Micropor. Mesopor. Mat. 215 (2015) 1–7. Crossref

(11) O.O. Ayeleru, H.U. Modekwe, O.R. Onisuru, C.R. Ohoro, C.A. Akinnawo, P.A. Olubambi, Adsorbent Technologies and Applications for Carbon Capture, and Direct Air Capture in Environmental Perspective and Sustainable Climate Action, Sustain. Chem. Clim. Action 3 (2023) 100029. Crossref

(12) S. Kumar, R. Srivastava, J. Koh, Utilization of Zeolites as CO₂ Capturing Agents: Advances and Future Perspectives, J. CO₂ Util. 41 (2020) 101251. Crossref

(13) Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO₂ Capture by Solid Adsorbents and Their Applications: Current Status and New Trends, Energy Environ. Sci. 4 (2011) 42–55. Crossref

(14) V. Inglezakis, A. Zorpas, Handbook of Natural Zeolites, Bentham Sci. Publ., Sharjah, 2012. ISBN 978-1-60805-261-5

(15) J. Fermoso, A. Sanna, High-Temperature CO₂ Capture by Fly Ash Derived Sorbents: Effect of Scale-up on Sorbents Performance, Chem. Eng. J. 429 (2022) 132201. Crossref

(16) J. Ding, C. Yu, J. Lu, X. Wei, W. Wang, G. Pan, Enhanced CO₂ Adsorption of MgO with Alkali Metal Nitrates and Carbonates, Appl. Energy 263 (2020) 114681. Crossref

(17) D.A. Kennedy, F.H. Tezel, Cation Exchange Modification of Clinoptilolite – Screening Analysis for Potential Equilibrium and Kinetic Adsorption Separations Involving Methane, Nitrogen, and Carbon Dioxide, Microporous Mesoporous Mater. 262 (2018) 235–250. Crossref

(18) E. Gan’shina, A. Novikov, V. Chernenko, J. Barandiaran, E. Cesari, I. Rodionov, I. Titov, V. Prudnikov, A. Granovsky, Magneto-Optical Study of Martensitic Transition in Ni₄₅Mn₃₆.₇In₁₃.₃Co₅ (at. %) Single Crystals, Solid State Phenom. 233–234 (2015) 225–228. Crossref

(19) R.H.M. Reis, L.F. Nunes, M.S. Oliveira, V.F.D.V. Junior, F.D.C.G. Filho, M.A. Pinheiro, V.S. Candido, S.N. Monteiro, Guaruman Fiber: Another Possible Reinforcement in Composites, J. Mater. Res. Technol. 9 (2020) 622–628. Crossref

(20) X. Nie, H. Wang, Z. Liang, Z. Yu, J. Zhang, M.J. Janik, X. Guo, C. Song, Comparative Computational Study of CO₂ Dissociation and Hydrogenation over Fe–M (M = Pd, Ni, Co) Bimetallic Catalysts: The Effect of Surface Metal Content, J. CO₂ Util. 29 (2019) 179–195. Crossref

(21) M. Mambetova, K. Dossumov, G. Yergaziyeva, The Influence of Mg, Na, and Li Oxides on the CO₂ Sorption Properties of Natural Zeolite, Processes 12 (2024) 2592. Crossref

(22) T. Selvamani, A. Sinhamahapatra, D. Bhattacharjya, I. Mukhopadhyay, Rectangular MgO Microsheets with Strong Catalytic Activity, Mater. Chem. Phys. 129 (2011) 853–861. Crossref

(23) T.M. Rossi, J.C. Campos, M.M.V.M. Souza, CO₂ Capture by Mg–Al and Zn–Al Hydrotalcite-like Compounds, Adsorption 22 (2016) 151–158.

(24) S. Kulawong, S. Youngjan, P. Khemthong, N. Chanlek, J. Wittayakun, N. Osakoo, Magnesium Impregnated on NaX Zeolite Synthesized from Cogon Grass Silica for Fast Production of Fructose via Microwave-Assisted Catalytic Glucose Isomerization, Catalysts 11 (2021) 981. Crossref

Downloads

Published

2025-06-30

How to Cite

Mambetova, M., Anisova, M., Myltykbaeva, L., Makaeva, N., Dosumov, K., Shakieva, T., & Yergazieva, G. (2025). Effect of sodium and magnesium oxides on the sorption properties of natural zeolite Shankanai. Combustion and Plasma Chemistry, 23(2), 153-161. https://doi.org/10.18321/cpc23(2)153-161