Getting graphene structures in graphite with benzene at affecting of ultrasonic

Authors

  • B.A. Baitimbetova Kazakh national technical university after K.I. Satpayev, Satpayeva st., 22, 050013 Almaty
  • B.M. Vermenichev Kazakh national technical university after K.I. Satpayev, Satpayeva st., 22, 050013 Almaty
  • Yu.A. Ryabikin Institute of physics and technology, Ibragimova st. 11, 050032 Almaty
  • Z.А. Маnzurov Institute of Combustion Problems, Bogenbay batyr st. 172, 050012 Almaty

DOI:

https://doi.org/10.18321/

Keywords:

graphene, benzene, ultrasound, spectrum, carbon

Abstract

Considered a new efficient method for the synthesis of graphene. The method is based on the chemical effects of organic reactants (benzene, toluene) of pure graphite in the presence of the ultrasonic field. In the article considered by the chemical interaction of the organic solvent of benzene and graphite which leading to the destruction of the weak carbon bonds between planes of graphite. Ultrasonic field contributes to more efficient destruction of the van der Waals bonds. This method using benzene as the solvent, in contrast to other methods using acid, solutions alkali , provides a more efficient way to obtain graphene structures. The article describes a method of obtaining graphene structures and investigation of the structural features of the methods of Raman spectroscopy, scanning microscopy and transmission electron microscopy of high resolution. The results of investigation of these samples on this methods and discussion them.

References

(1) Geim A. K., Novoselov K. S. The rise of graphene // Nature Materials. 2007. V. 6, No. 3. P. 183–191.

(2) Ткачев С. В., Буслаева Е. Ю., Губин С. П. Графеновый углеродный наноматериал // Неорганические материалы. 2011. Т. 47, № 1. С. 5–14.

(3) Андриевский Р. А. Водород в наноструктурах // Успехи физических наук. 2007. Т. 177, № 7. С. 721–735.

(4) Nemanich R. J., Solin S. A. First- and second-order Raman scattering from finite-size crystals of graphite // Phys. Rev. B. 1979. V. 20, No. 2. P. 392–401.

(5) Reich S., Thomsen Ch. Raman spectroscopy of graphite // Phil. Trans. Roy. Soc. London A. 2004. P. 2271–2288.

(6) Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects // Solid State Communications. 2007. V. 143. P. 47–57.

(7) Ni Zh., Wang Y., Yu T., Shen Z. Raman spectroscopy and imaging of graphene // Nano Research. 2008. No. 1. P. 273–291.

(8) Mohiuddin T. M. G., Lombardo A., Nair R. R., Bonetti A., Savini G., Jalil R., Bonini N., Basko D. M., Galiotis C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grueneisen parameters, and sample orientation // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 79, No. 20. P. 205433.

(9) Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., et al. Raman spectrum of graphene and graphene layers // Phys. Rev. Lett. 2006. V. 97. P. 187401–4.

(10) Luican A., Li G., Reina A., Kong J., Nair R. R., Novoselov K. S., Geim A. K., Andrei E. Y. Single-layer behavior and its breakdown in twisted graphene layers // Phys. Rev. Lett. 2011. V. 106. P. 126802–4.

Downloads

Published

2013-02-25

How to Cite

Baitimbetova, B., Vermenichev, B., Ryabikin, Y., & Маnzurov Z. (2013). Getting graphene structures in graphite with benzene at affecting of ultrasonic. Combustion and Plasma Chemistry, 11(1), 76-82. https://doi.org/10.18321/