Mechanochemical Processing of Natural Raw Materials and Technogenic Wastes to Obtain Thermal Insulation Materials

Authors

  • А.E. Maten Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • B.S. Sadykov Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan
  • А.B. Аrtykbayeva Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • A.S. Adilkhan Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan
  • A.O. Zhapekova Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan; Kazakh National Women’s Teacher Training University, Gogol st., 114, Almaty, Kazakhstan
  • А.E. Bakkara Institute of Combustion Problems, Bogenbai Batyr st., 172, Almaty, Kazakhstan; Al-Farabi Kazakh National University, Al-Farabi ave., 71, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/cpc23(3)323-333

Keywords:

diatomite, ash-slag, thermal insulation materials, mechanochemical treatment, composite structure, graphite, waste utilization, waste recycling

Abstract

Re-using ash-slag waste from coal-fired power plants for thermal-insulation products offers a viable route to waste valorisation and energy saving. In this work, natural diatomite and ash-slag waste were jointly mechanochemically activated for 20 min in a «NXQM-2A» centrifugal planetary mill (powder-to-ball mass ratio 1:4) and simultaneously modified with graphite. High-energy milling destroyed residual crystalline phases, increased the amorphous aluminosilicate fraction and preserved an intrinsic pore network, which lowered the thermal conductivity of the composites to 0.10-0.12 W/m·K while raising bulk density and compressive strength (diatomite: 5.6-23.2 MPa; fly ash: 10.5-37.6 MPa). Addition of 10 wt % graphite further enhanced the hydrophobicity of diatomite – reducing water uptake by about 50% produced the minimum λ-value (0.11 W/m·K) for the ash-slag system. Conversely, 20 wt% graphite generated excessive macroporosity, lowering strength to 4-2 MPa and diminishing moisture resistance. Thus, mechanochemical activation combined with moderate graphite dosing markedly improves the thermal (lower λ) and mechanical (higher strength) performance of diatomite- and ash-based composites while simultaneously decreasing water absorption. The results confirm the feasibility of upcycling ash-slag waste into high-efficiency insulation materials suitable for building envelopes and other thermal-barrier applications.

References

(1) M. Liu, P. Zhu, X. Yan, et al. The Application of Solid Waste in Thermal-Insulation Materials: A Review, J. Renew. Mater. 12 (2024) 329–347. Crossref

(2) M. Raza, A. Farhan, B. Abu-Jdayil. Lignocellulose-Based Insulation Materials: Sustainable Solutions for Energy Efficiency, Int. J. Innov. Food Tech. 24 (2024) 100844. Crossref

(3) M.G. Lee, Y. Huang, Y.F. Shih, et al. Mechanical and Thermal Insulation Performance of Waste-Diatomite Cement Mortar, J. Mater. Res. Technol. 25 (2023) 4739–4748. Crossref

(4) V. Martínez, T. Stolar, B. Karadeniz, et al. Advancing Mechanochemical Synthesis by Combining Milling with Different Energy Sources, Nat. Rev. Chem. 7 (2023) 51–65. Crossref

(5) A. Bakkara, B. Sadykov, A. Artykbaeva, et al. Energy-Intensive Materials with Mechanically Activated Components, ChemEngineering 7 (2023) 97. Crossref

(6) H. Xu, H. Wang, Z. Zhang, et al. High-Efficiency Al-Based Multicomponent Composites for Low-Temperature Hydrogen Production, Int. J. Hydrogen Energy 48 (2023) 26260–26275. Crossref

(7) D.V. Dudina, B.B. Bokhonov. Materials Development Using High-Energy Ball Milling: A Review, J. Compos. Sci. 6 (2022) 188. Crossref

(8) A.G. Adeniyi, S.A. Abdulkareem, C.A. Adeyanju, et al. Recycling Biochar and Aluminium Filings into Thermally Conducting Polystyrene Composites, J. Polym. Environ. 30 (2022) 3150–3162. Crossref

(9) Z.H. Liu, F. Wang, Z.P. Deng. Thermal-Insulation Composite Based on SiO₂ Aerogel, Constr. Build. Mater. 286 (2021) 122921. Crossref

(10) G.A. Medvedeva, R.T. Akhmetova, A.A. Yusupova. Utilization of Ash-and-Slag Waste in Sulfur Concrete Production, Sovrem. Naukoyomk. Tekhnol. 11 (2021) 43–47.

(11) L.M. Delitsyn, A.S. Vlasov, Yu.V. Ryabov. Innovative Technology for Full-Scale Processing of TPP Ash Waste, In Kompleksnoe Osvoenie Tekhnogennykh Obrazovaniy, South Ural State University, Chelyabinsk (2021) 103–108.

(12) N.N. Mofa, Z.A. Mansurov. Mechanochemical Synthesis of Surface Nanostructures for Composite Materials, In Proc. Int. Conf. “Mechanochemical Synthesis and Sintering” (2021) 67–68.

(13) A.E. Bakkara, B.S. Sadykov, A.S. Khairullina, et al. Patent for Utility Model RK No. 9822. Composition for the Production of Thermal Insulation Material.

Downloads

Published

2025-10-17

How to Cite

Maten А., Sadykov, B., Аrtykbayeva . А., Adilkhan, A., Zhapekova, A., & Bakkara А. (2025). Mechanochemical Processing of Natural Raw Materials and Technogenic Wastes to Obtain Thermal Insulation Materials. Combustion and Plasma Chemistry, 23(3), 323-333. https://doi.org/10.18321/cpc23(3)323-333