Математические модели активной зоны ториевого реактора
DOI:
https://doi.org/10.18321/cpc22(4)279-295Кілт сөздер:
торий, ториевый ядерный реактор, субкритический ядерный реактор, теоретические расчетные моделиАңдатпа
В последнее десятилетие наблюдается экспрессивный интерес к использованию тория в качестве альтернативного топлива для ядерных реакторов. Минимально эффективный способ использования тория – добавление небольших количеств оксида тория (ThO2) к обычному оксидному топливу на основе урана. Более сложный, но более выгодный способ использования оксида тория – в системах на быстрых нейтронах со специальной конфигурацией активных зон и фертильным слоем вокруг них. При необходимости некоторого увеличения коэффициента воспроизводства может быть использовано нитридное или карбидное топливо вместо оксидного. Для развития этой области необходимо проведение дополнительных исследований по описанию основных свойств, моделированию и расчету различных подобных систем, а также разработке технологических методов и оборудования.
Әдебиеттер тізімі
(1). Jyothi RK, De Melo LGTC, Santos RM, Yoon HS (2023) Front Energy Res 11:1132611. Crossref
(2). «Atomnaya energiya» Internet newspaper, 31 Oct. (2023) Startup ThorCon Power will build Indonesia’s first floating 500-megawatt nuclear power plant with liquid-salt thorium reactors by 2030 [Startap ThorCon Power k 2030 godu postroit v Indonezii pervuyu plavuchuyu 500-megavattnuyu AES s zhidkosolevymi torievymi reaktorami]. URL
(3). «Moya energiya» Internet newspaper. (2024) From uranium to thorium. A new stage in the development of the world’s nuclear power industry [Ot urana k toriyu. Novyy etap razvitiya atomnoy mirovoy energetiki]. https://www.myenergy.ru/innovation/2022/ot-urana-k-toriju-novyi-ehtap-razvitija-atomnoi-mirovoi-ehnergetiki/ URL
(4). «Atomnaya energiya» Internet newspaper, 29 March. (2022) US startup Flibe Energy is developing a thorium and lithium fluoride liquid-salt reactor project [Amerikanskiy startap Flibe Energy razvivaet proekt zhidkosolevogo reaktora na torii i ftoride litiya]. URL
(5). Oettingen M, Cetnar J (2021) Nukleonika 66(4): 133-138. Crossref
(6). van der Walt HB, van Niekerk F, Reitsma F (2023) Nucl Eng Des 408:112319. Crossref
(7). Li CY, Xia XB, Cai J, Zhang ZH, Zhang GQ, Wang JH, Qian ZC (2021) Nucl Sci Tech 32(2):22. Crossref
(8). Kozhevnikov EV, Turbakov MS, Riabokon EP, Poplygin VV (2021) Energies 14(8):2306. Crossref
(9). Nguyen TH, Chen Y (2024) Prog Nucl Energy 176:105392. Crossref
(10). Wei L, Zheng Y, Du X, Liu S, Kang C, Liu Z, Wang Y, Xiao B (2022) Ann Nucl Energy 165:108664. Crossref
(11). Kurniawan TA, Othman MHD, Singh D, Avtar R, Hwang GH, Setiadi T, Lo WH (2022) Ann. Nucl. Energy 166:108736. Crossref
(12). Semenishchev VS, Voronina AV (2019) Strontium Contamination in the Environment: 25-42. Crossref
(13). Lee JJ, Arregui-Mena JD, Contescu CI, Burchell TD, Katoh Y, Loyalka SK (2020) J Nucl Mater 534:152119. Crossref
(14). Fuks L, Herdzik-Koniecko I, Kiegiel K, Zakrzewska-Koltuniewicz G (2020) Energies 13(18):4638. Crossref
(15). Kulikov GG, Shmelev AN, Kruglikov AE, Apse VA, Kulikov EG (2020) J Phys Conf Ser 1689(1):012034. Crossref
(16). Keppen JD (2020) Feasibility Study of a Thermal Spectrum Thorium Breeder Reactor Without Chemical Reprocessing. ScholarsArchive@OSU. URL
(17). Uguru EH, Abdul Sani SF, Khandaker MU, Rabir MH, Karim JA, Onah DU, Bradley DA (2020) Int J Energy Res 45(8):12013-12028. Crossref
(18). Lee JC (2020) Nuclear Reactor: Physics and Engineering.John Wiley & Sons, Inc. Crossref
(19). Clark AR, Mattingly J, Favorite JA (2020) Nucl Sci Eng 194(4):308-333. Crossref
(20). Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D Steinhardt J (2021) Measuring mathematical problem solving with the math dataset. URL
(21). Kaiser G (2020) Encyclopedia of mathematics education: 553-561. Crossref
(22). Mohamadou Y, Halidou A, Kapen PT (2020) Appl Intell 50:3913-3925. Crossref
(23). Ashraf O, Rykhlevskii A, Tikhomirov GV, Huff KD (2020) Ann Nucl Energy 148:107656. Crossref
(24). Ma Y, Min J, Li J, Liu S, Liu M, Shang X, Yu G, Huang S, Yu H, Wang K (2020) Prog Nucl Energy 122:103235. Crossref
(25). Ahmad H, Seadawy AR, Khan TA, Thounthong P (2020) J Taibah Univ Sci 14(1):346-358. Crossref
(26). Akinyemi L, Rezazadeh H, Yao SW, Akbar MA, Khater MM, Jhangeer A, Inc M, Ahmad H (2021) Results Phys 26:104411. Crossref
(27). Zheng S (2020) Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, Chapman and Hall/CRC. P. 272. Crossref
(28). Singh OP (2021) Physics of Nuclear Reactors: 695-749. Crossref
(29). Ashraf O, Rykhlevskii A, Tikhomirov GV, Huff KD (2020) Ann Nucr Energy 137:107115. Crossref
(30). Porcu G (2020) Analytical solution for the one group kinetic diffusion equation for the reflected reactor.
(31). Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2021) Rev Mod Phys 93(1):015002. Crossref
(32). Inal OB, Charpentier JF, Deniz C (2022) Renew Sustain Energy Rev 156:111965. Crossref
(33). Xing H, Stuart C, Spence S, Chen H (2021) J Clean Prod 297:126651. Crossref
(34). Wang H, Matios E, Luo J, Li W (2020) Chem Soc Rev 49:3783-3805. Crossref
(35). Alzoubi MA, Xu M, Hassani FP, Poncet S, Sasmito AP (2020) Tunn Undergr Space Technol 104:103534. Crossref
(36). Elazaka AI, Tikhomirov GV, Savander VI, Abdel‐Rahman MA, Galahom AA (2022) Int J Energy Res 46(5):6112-6125. Crossref
(37). Raj D, Kannan U (2023) Ann Nucl Energy 188:109801. Crossref
(38). Kaffezakis N, Kotlyar D (2020) Nucl Technol 206(1):48-72. Crossref
(39). Sinh Nguyen T, Wang X, Bromley BP (2022) J Nucl Eng Radiat Sci 8(3):031502. Crossref
(40). Peng Y, Zhu G, Zou Y, Liu S, Xu H (2020) Int J Energy Res 44(10):8062-8073. Crossref
(41). Peralta ML, Gonzalez ME, Villarino E, Bea EA, Soba A (2021) J Nucl Mater 557:153279. Crossref
(42). Mohsen MYM, Soliman AY, Abdel-Rahman MAE (2020) Prog Nucl Energy 130:103568. Crossref
(43). DeHart MD (2016) ORNL/TM-2005/39 II.
(44). Chandler D, Maldonado GI, Primm RT, Freels JD (2011) Ann Nucl Energy 38(11):2594-2605. Crossref
(45). Xoubi N, Soliman AY (2017) Anns Nucl Energy 109:667-674. Crossref
(46). Williamson RL (2011) J Nucl Mater 415(1):74-83. Crossref
(47). Williamson RL, Hales JD, Novascone SR, Tonks MR, Gaston DR, Permann CJ, Andrs D, Martineau RC (2012) J Nucl Mater 423(1-3):149-163. Crossref
(48). Berna GA, Beyer CE, Davis KL, Lanning DD (1997) FRAPCON-3: a Computer Code for the Calculation of Steady-state, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burn-up. NUREG/CR-6534, Idaho National Engineering and Environmental Laboratory. Crossref
(49). Liu R, Prudil A, Zhou W, Chan PK (2016) Prog Nucl Energy 91:38-48. Crossref
(50). Aldebie F, Fernandez-Cosials K, Hassan Y (2024) Nucl Eng Des 420:113003. Crossref
(51). Jiao G, Xia G, Zhu H, Zhou T, Peng M (2023) Ann Nucl Energy 192:110025. Crossref
(52). Jiao G, Xia G, Wang J, Peng M (2024) Nucl Eng Technol 56(5):1698-1711. Crossref
(53). Duderstadt JJ, Hamilton LJ (1976) Nuclear Reactor Analysis, New York. John Wiley and Sons.
(54). Aufiero M, Cammi A, Fiorina C, Luzzi L, Sartori A (2013) Nucl Eng Des 256:14-27. Crossref
(55). Cammi A, Marcello VD, Luzzi L, Memoli V, Ricotti ME (2011) Ann Nucl. Energy 38(6):1356-1372. Crossref
(56). Wang Y, Chen J, Li D, Shi L, Chi H, Ma Y (2024)Nucl Eng Des 416:112746. Crossref
(57). Hong SG, Cho NZ (1998) Ann Nucl Energy Vol. 25:547-565. Crossref
(58). Deng L, Xie ZS, Zhang JM (1988) J Nucl Sci Technol 37:608-614. Crossref



